В.В. Кальченко

Черниговский государственный технологический университет, г. Чернигов, Украина

ШЛИФОВАНИЕ ТОРОВЫХ ПОВЕРХНОСТЕЙ С УПРАВЛЯЕМЫМ УГЛОМ СКРЕЩИВАНИЯ ОСЕЙ КРУГА И ДЕТАЛИ

The contourings of abrasive wheels and their wear are developed a new mode of grinding profile of surfaces stabilizing wear of a structure of a circle, and three-dimensional geometrical sample pieces of processes to removed of an allowance, formation of the form.

Шлифование наружных и внутренних торовых поверхностей, например, внутренних и наружных колец шарикоподшипников, шарошек буровых долот, трубопрокатных валков и других деталей, осуществляют методом копирования абразивным кругом с профилем, соответствующим образующей детали [1]. Съем припуска производят за счет поперечного перемещения круга в горизонтальной плоскости, в которой расположены оси вращения его и детали. При профильном шлифовании в качестве критерия стойкости круга принимают изменение его геометрической формы в результате износа. В процессе шлифования торовых поверхностей для восстановления первоначальной формы круга по радиусу ρ_{κ} (рис. 1, Б-Б) необходимо срезать его в направлении, перпендикулярном оси вращения, на величину k, которую находят из соотношения

$$k = -(\rho_k - H_{in}) \cdot \sin \alpha_{in} + \sqrt{(\rho_k - H_{in})^2 \cdot \sin^2 \alpha_{in} - H_{in}^2 + 2\rho_k \cdot H_{in}}, \qquad (1)$$

где U_{in} – линейный, нормально расположенный износ в i-той точке профиля круга при обработке n-ной детали; ρ_{κ} – радиус профиля круга после правки; α_{in} – угол, определяющий направление износа U_{in} , величина которого дает максимальное значение k (1).

В результате проведенных исследований [1] установлено, что в процессе съема припуска δ (рис. 1, A-A) глубина резания t_{α} , длина и площадь контакта F (рис. 1, C) круга 1 и детали 2 изменяются по координате обработки профиля. Величина врезания $l=\delta/\psi_q$ max – больше припуска δ на обработку и зависит от максимального угла ψ_q max подъема образующей детали и координат ε_y и ε_z (рис. 1, A-A) смещений припуска вдоль ее координатных осей y_q и z_q , что снижает производительность и качество обработки. Максимальный износ $H_{in max}$ (1) находится в i-той точке профиля круга, где $\alpha_{iн} \approx \psi_q \max$, что обуславливает частые правки абразивного круга и не полное использование его режущей способности. Так при шлифовании наружной торовой поверхности трубопрокатного валка кругом с $\rho_{\kappa}=100$ мм и $\alpha_{i\mu}=0$, после износа его в точке і на величину $H_{in}=0,05$ мм, для восстановления профиля необходимо срезать круг в плоскости, совпадающей с осью $O_u Y_u$ (рис. 1, Б-Б) на величину k=3,16 мм (1), что приводит к не рациональному использованию абразива, который срезается при правках не участвуя в процессе шлифования.

Разработан способ шлифования наружных торовых поверхностей со скрещивающимися осями абразивного круга и детали [2], который направлен на стабилизацию глубины резания по координате обработки профиля без учета износа инструмента. Для повышения эффективности шлифования внутренних и наружных торовых поверхностей со скрещивающимися осями детали и круга и стабилизации его профиля в процессе износа, необходимо разработать трехмерные математические модели профилирования абразивного круга, его износа, съема припуска и формообразования. На базе исследований моделей разработать способ шлифования торовых поверхностей со скрещивающимися осями круга и детали и метод управления процессом шлифования на станках с ЧПУ, который обеспечит стабилизацию профиля круга в процессе его износа и постоянную глубину резания по координате обработки.

Линейный износ И_{іп} в і-той точке (рис. 1, Б-Б) профиля круга в процессе обработки п-ной детали, определяют из разработанного нами уравнения

$$H_{in} = \int_{T_o} \frac{C_{yin} \cdot Q_{yin}^m + C_{qin} \cdot Q_{qin}^b}{k_{\alpha} \cdot 2\pi \cdot R_{in}} \cdot dT_o , \qquad (2)$$

где Q_{yin} – удельный объем снимаемого металла i-тым участком n-ного профиля круга; C_{yin} – коэффициент удельного износа в R_i – той точке n-ого профиля круга при Q_{yin} =1, который определяется экспериментальным путем для каждого i-того участка круга по методике, изложенной в работе [3]; k_{α} - коэффициент, учитывающий перекрытие режущих кромок; m – коэффициент, учитывающий интенсивность режима шлифования и состояние режущей поверхности круга, для абразивных кругов из электрокорунда и карбида кремния m=1,6... 2 [4]; Q_{qin} – удельный объем упруго деформируемого металла, без резания, абразивными зернами i-того участка n-ного профиля круга; C_{qin} – коэффициент, учитывающий интенсивность режима седормируемого металла, без резания, абразивными зернами i-того участка n-ного профиля круга; C_{qin} – коэффициент, учитывающий интенсивность режима деформирования металла без его съема; T_o – время обработки детали за часть ее оборота, один оборот либо число оборотов, необходимых для обработки n-ной детали участком круга в пределах i-той точке при обработке n-той детали.

Удельный объем Q_{yin} (2) снимаемого металла определяется внутренним интегралом разработанной нами трехмерной геометрической модели съема припуска и формообразования при шлифовании торовых поверхностей, которая имеет вид

$$Q = \int_{1}^{T_n} (\int_{1}^{i_2} \frac{\theta_{2ki}}{\int_{i_1}^{i_1} \frac{1}{V_{in}} \cdot \overline{n}_{in}} \cdot (R_i - M_{in} \cdot \sin \alpha_{in}) \cdot d\theta_k) \cdot \sqrt{\left(\frac{dR_{in}}{di}\right)^2 + \left(\frac{dz_{in}}{di}\right)^2} \cdot di) \cdot dT_n, \quad (3)$$

где Q – объем металла, который подводится в зону обработки; T_n – время контакта пной детали 2 (рис. 1, A-A) с кругом 1; R_i , Z_i (рис. 1, Б-Б) – радиус круга 1 в i-той точке профиля после правки и его осевая координата; Z_{in} – текущая осевая координата радиуса R_{in} профиля круга в i-той точке (рис. 1, Б-Б) при обработке n-ной детали, учитывающая износ U_{in} (2) круга; \overline{V}_{in} – вектор скорости относительного движения детали 2 и круга 1 в i-той точке с учетом его износа M_{in} (2); \overline{n}_{in} – единичный вектор нормали к поверхности контакта круга 1 и детали 2 в i-той точке профиля (рис. 1, Б-Б) с учетом износа M_{in} (2); $\theta_{1\kappa i}$ и $\theta_{2\kappa i}$ – угловые координаты пятна F контакта на радиусе $R_i - M_{in} \cdot sin\alpha_{in}$ (рис. 1, C) круга; i_1 и i_2 – предельные значения параметра i осевого сечения круга 1 в зоне контакта (рис. 1, Б-Б); α_{in} – текущий угол наклона касательной к плоскости, перпендикулярной к оси вращения круга 1, в i-той точке профиля с координатами $R_i - M_{in} \cdot sin\alpha_{in}$; $Z_i - M_{in} \cdot cos\alpha_{in}$ (рис. 1, Б-Б).

Рисунок – 1 Схема шлифования торовых поверхностей с управляемым углом скрещивания осей круга и детали

Из уравнения (3) определяют объем металла, который подводится в процессе шлифования. Возможность срезать этот объем кругом проверяют решением соотношения

$$\overline{V}_{in} \cdot \overline{n}_{in} \le \frac{a_{znp}}{\tau_i},\tag{4}$$

где a_{znp} – предельно допускаемая толщина слоя, которая срезается одной режущей кромкой [4]; τ_i – время между контактами поверхности детали с двумя соседними режущими кромками на радиусе R_i профиля круга.

Удельный объем Q_{yin} снимаемого металла, при расчете линейного износа И_{in} (2), определяется внутренним интегралом геометрической модели (3)

$$Q_{yin} = \int_{\theta_{1ki}}^{\theta_{2ki}} \overline{V_{in}} \cdot \overline{n}_{in} \cdot (R_i - H_{in} \cdot \sin \alpha_{in}) \cdot d\theta_k , \qquad (5)$$

когда

$$V_{in} \cdot \overline{n}_{in} \cdot \tau_i \ge a_{z,min} \,, \tag{6}$$

где a_{zmin} – минимальная толщина срезаемого слоя одной режущей кромкой, при которой начинается процесс резания.

$$a_{z,\min} = \rho_c \cdot d , \qquad (7)$$

где ρ_c - радиус скругления режущих кромок шлифовального круга; d – коэффициент, равный критическим отношениям a_z/ρ_c , характеризующим момент начала резания. Методика определения d и экспериментальные значения его приведены в работе [4].

Рисунок 2 – Зависимость радиуса ρ_{ki} профиля круга, его центрального угла α_{imax} и положения линии L¹ контакта от угла ψ скрещивания осей инструмента и детали

При $\overline{V_{in}} \cdot \overline{n_{in}} \cdot \tau_i < a_{z \min}$, выражение (5) описывает удельный объем Q_{qin} (2) упруго деформируемого металла абразивными зернами без резания.

Координаты пятна контакта $\theta_{1\kappa i}$, $\theta_{2\kappa i}$, i_1 и i_2 в выражении (3) при шлифовании определяются совместным решением векторных уравнений поверхностей заготовки, детали 2 и круга 1 (рис. 1, С) в его системе координат. Для разработки 3D модели профилирования круга, при шлифовании торовых поверхностей со скрещивающимися осями его и детали, необходимо иметь 3D модели заготовки и детали в ее системе координат. Торовая наружная поверхность, например, внутреннего кольца шарикоподшипника 2 (рис. 1, А-А), может быть описана радиус-вектором

$$\bar{r}_q(\theta, \psi_q) = M_6(-\theta) \cdot M_1(R) \cdot M_5(\psi_q) \cdot M_3(-\rho) \cdot e_4, \qquad (8)$$

где ρ - радиус осевого сечения тора; ψ_q – угловой параметр точки образующей осевого сечения детали; R – радиус, определяющий положение центра О радиуса ρ относительно оси детали; θ - угловой параметр (рис. 1); M_1 , ..., M_6 – матрицы размером 4×4 выражают преобразование систем координат вдоль и вокруг координатных осей; $e_4 = (0,0,0,1)^T$ – координаты текущей точки поверхности детали [5].

Для профилирования круга необходимо получить уравнение, которое определяет линию контакта

$$\overline{V}_q \cdot \overline{n}_q = 0, \qquad (9)$$

где \overline{V}_q - вектор скорости относительного движения торовой поверхности детали в системе координат круга; \overline{n}_q - единичный вектор нормали к поверхности детали.

Вектор нормали равен векторному произведению векторов касательных к поверхности детали. Для их определения необходимо дифференцировать радиус-вектор $\bar{r}_q(\theta, \psi_q)$ (8) поверхности детали по обеим параметрам θ и ψ_q . Для нахождения вектор ра \overline{V}_q относительной скорости необходимо перенести радиус-вектор $\bar{r}_q(\theta, \psi_q)$ (8) поверхности детали в систему координат круга и дифференцировать его по времени $\bar{r}_{uq}(\theta_k, \psi, y_c, \theta, \psi_q) = M_6(\theta_k) \cdot M_5(\psi) \cdot M_2(y_c) \cdot \bar{r}_q(\theta, \psi_q)$, (10)

где θ_k - угловой параметр, который определяет угловое положение детали в системе координат круга; ψ - угол (рис. 1) скрещивания осей вращения круга и детали; у_с – расстояние между началами O_u и O_q систем координат круга и детали.

В уравнении (10) угловой параметр θ_k единственный, который изменяется во время обработки, по этому, при определении вектора \overline{V}_q относительной скорости, вектор \overline{r}_{ua} необходимо дифференцировать по параметру θ_k .

Разработанная программа в пакете Math CAD [6] позволила рассчитывать положения линии контакта L (рис. 1) на поверхности детали 2 в зависимости от угла ψ скрещивания осей. При вращении линия контакта вокруг оси инструмента образуется его поверхность. На рисунке 2-а показаны профили осевых сечений торовой поверхности детали 2, круга 1 (массив i-тых точек профиля с рассчитанными координатами R_i и Z_i) и дуга окружности радиусом ρ_{ki} , которая заменяет профиль инструмента. Трехмерная геометрическая модель шлифовального круга, с учетом полученных расчетных i-тых точек профиля, имеет вид

$$\bar{r}_{u}(\theta_{k},i) = M_{3}(Z_{i}) \cdot M_{6}(\theta_{ki}) \cdot M_{2}(R_{i}) \cdot e_{4}, \qquad (11)$$

где \bar{r}_u - радиус вектор точек поверхности шлифовального круга; θ_{ki} - угловой параметр точки і профиля круга.

Для описания 3D модели процесса съема припуска и формообразования необходимо получить уравнение, которое определяет линию контакта

$$\overline{V}_k \cdot \overline{n}_k = 0 , \qquad (12)$$

где V_k - вектор скорости относительного движения круга в системе координат детали; \bar{n}_k - единичный вектор нормали к поверхности круга.

Для определения векторов касательных к поверхности круга, при определении вектора нормали к ней, необходимо дифференцировать радиус-вектор $\bar{r}_{u}(\theta_{k},i)$ (11) поверхности круга по обеим параметрам θ_{κ} и і. Для нахождения вектора \bar{V}_{k} необходимо перенести радиус-вектор $\bar{r}_{u}(\theta_{k},i)$ в систему координат детали и дифференцировать по времени.

$$\bar{r}_{qu}(\theta, y_c, \psi, \theta_k, i) = M_6 \cdot (\theta) \cdot M_2(-y_c - a \cdot \theta) \cdot M_5(\psi) \cdot \bar{r}_u(\theta_k, i),$$
(13)

где \bar{r}_{qu} - радиус-вектор точек обрабатываемой торовой поверхности; a=t/2 π - постоянная архимедовой спирали, по которой перемещается круг при съеме припуска δ ; t – величина поперечной подачи круга 1 (рис. 1, A-A) в направлении, перпендикулярном оси $O_q Z_q$ вращения детали на один ее оборот. Значения других параметров в уравнении (13) аналогичны приведенным в уравнениях (10), (11).

В уравнении (13) угловой параметр θ единственный, который изменяется во время обработки, по этому, при определении вектора \overline{V}_k относительной скорости, вектор \overline{r}_{au} (13) дифференцируют по параметру θ .

Разработана программа в пакете Math CAD [6], которая дает возможность рассчитывать положения линии контакта на поверхности круга в зависимости от текущих значений угла ψ скрещивания осей и расстояния l между осями круга $O_u Z_u$ и детали $O_q Z_q$ в процессе съема припуска δ .

$$l = y_c + t_b + a \cdot \theta + t_{Min}, \qquad (14)$$

где $a \cdot \theta = \delta$ - снимаемый припуск; t_b – поперечное перемещение круга, обусловленное смещениями ε_y и ε_z припуска δ ; t_{\min} – дополнительная подача круга, компенсирующая износ его профиля в процессе съема припуска δ .

При вращении линии контакта вокруг оси детали по архимедовой спирали при съеме припуска, образуется текущая поверхность заготовки, в виде кольцевого желоба переменного профиля с текущим по координате обработки, радиусом ρ_{3i} (рис. 1, A-A) заготовки. Когда припуск снят, δ =0, t_b =0, t_{uin} =0 и l=y_c (14) вращающаяся вокруг оси детали линия контакта без поперечного перемещения, где a=0, описывает форму обработанной торовой поверхности детали с радиусом ρ_{qi} (рис. 1, A-A) ее осевого сечения.

На рисунке 2-а показан профиль осевого сечения круга в виде массива і-тых точек с координатами R_i , Z_i , на рисунке 1, A-A – массив точек с координатами R_{3i} , Z_{3i} профиля заготовки и R_{qi} , Z_{qi} – профиля детали. При помощи метода не линейной ре-

грессии [6] массивы точек были заменены на дуги окружностей соответственно с радиусами р_{ki} – профиля круга (рис. 2, а), р_{зi} – заготовки и р_{qi} – детали (рис. 1, А-А).

Анализ 3D модели (9), (10) профилирования круга показывает, что радиус ρ_{ki} его осевого сечения зависит от угла ψ скрещивания осей детали и круга. На рисунке 2-б показана функциональная зависимость $\theta = f(\psi_q)$ угла θ отклонения линий контакта L₁, L₂ и L₃ с осевой плоскости X_qO_qZ_q от углового параметра ψ_q , который описывает профиль желоба детали для предельных значений угла скрещивания ψ_0 , ψ_1 _{min}, ψ_2 _{max}. При ψ =0, ρ_{ki} = ρ_q (рис. 2, а), линия контакта L₁ (рис. 2, б) ее и круга лежит в горизонтальной плоскости. С увеличением ψ линия контакта L удлиняется, выходя из осевой плоскости детали, ρ_{ki} и высота круга H (рис. 2, а) уменьшаются. Это дает возможность управлять текущим радиусом ρ_{3i} (рис. 1, A-A) осевого сечения заготовки в процессе съема припуска δ . На рисунке 2-б линия контакта L₂ соответствует минимальному углу скрещивания ψ_{1min} , при котором радиус ρ_{ki2} (рис. 2, а) профиля круга и ньше радиуса ρ_3 заготовки перед ее обработкой, при параллельных осях $O_{\mu}Z_{\mu}$ круга 1 и O_qZ_q детали 2 (рис. 1, A-A). При этом технологический зазор Δ_T должен перекрывать ошибку Δ_{ϵ} , зависящую от смещений ϵ_y и ϵ_z припуска δ вдоль координатных осей $Z_q Y_q$.

$$\Delta_{\varepsilon} = \sqrt{\varepsilon_y^2 + \varepsilon_2^2} \ . \tag{15}$$

Линия контакта L₃ на рисунке 2-б соответствует максимальному углу скрещивания осей ψ_{2max} и минимальному радиусу $\rho_{kmin} = \rho_{ki3}$ (рис. 2, а) профиля круга, при котором осуществляется непрерывное формообразование торовой поверхности без разрывов вдоль периметра ее образующей.

Анализ 3D модели (12), (13) показывает, что в процессе формообразования, когда припуск δ снят и угол ψ_n скрещивания осей круга и детали при правке равен углу ψ_{ϕ} скрещивания при формообразовании, расчетный радиус ρ_{qi} равен радиусу тора ρ (рис. 1, A-A) и геометрическая погрешность формообразования $\Delta_{\phi}=\rho_{qi} - \rho = 0$. В процессе съема припуска, за счет оптимизации управляемого угла ψ_c скрещивания осей при поперечной подаче круга, максимальная погрешность Δ_c , рассчитанного радиуса ρ_{3i} заготовки, от заданного в виде дуги окружности $\rho_3=\rho - t_i$, не превышает 3...5 мкм в начале обработки и за тем уменьшается при поперечной подаче по мере приближения ρ_{3i} к ρ_{qi} . При $\rho_{3i} = \rho_{qi}$, погрешность $\Delta_c = 0$.

Анализ моделей износа H_{in} (2) круга и величины k (1), необходимой для восстановления его профиля при правках, показывает, что с уменьшением центрального угла α_{imax} (рис. 2, а) – k уменьшается. Для разгрузки боковых участков профиля круга и уменьшения центрального угла α_{imax} для заданного центрального угла ψ_{qmax} профиля детали, предложен способ шлифования торовых поверхностей с управляемыми углами ψ и ψ^1 (рис. 1) скрещивания осей круга и детали. При шлифовании наружной торовой поверхности с $\rho = 5$ мм, R=20 мм, $\psi_{qmax} = 90^\circ$, R_{imax} = 150 мм, $\delta = 0,3$ мм, абразивными кругами, он правится по радиусу $\rho_{ki2}=4,53$ мм (рис. 2, а) и подводится к заготовке до касания в точке B₁ (рис. 1, A-A, I) при параллельных осях его и детали ($\psi=0$). Во время поперечной подачи t_b осуществляется синхронный управляемый поворот круга на угол $\psi_b=\pm5,2^\circ$ (рис. 1, A-A, II, точка B₂) в сторону противоположную точке B₁ контакта его и смещенного припуска δ . Это дает возможность срезать смещенную часть припуска δ торцом круга, разгружая профиль от износа. На радиусе $\rho_3 = 4,7$ мм (рис. 1, A-A, II) отклонение $\Delta \rho$ рассчитанного радиуса ρ_{3i} методом не линейной регрессии равно $\rho_3 - \rho_{3i} = 0,0025$ мм. После съема t=0,1 мм, $\psi_t = 6,5^\circ$, отклонение $\Delta \rho$ радиуса $\rho_3 = 4,8$ мм в точке B₃ равно $\Delta \rho = 0,0017$ мм (рис. 1, A-A, III). И в точке B₄ профиля, где $\psi_{1m} = \psi_d = 8,5^\circ$, $\Delta \rho = 0$ (рис. 1, A-A, IV).

При обработке остается погрешность связанная с износом U_{in} круга после съема припуска δ , который рассчитывается по уравнению (2) для каждого оборота детали и суммарного числа оборотов при ее обработке. За тем рассчитывается профиль круга (рис. 1, Б-Б), учитывающий износ для і-тых точек, и методом не линейной регрессии определяют радиус $\rho_{\kappa u}$ профиля круга. По уравнениям (12), (13) рассчитывают профиль детали ρ_{qiu} учитывающий износ U_{in} . Если $\rho_{qiu} - \rho = \Delta_{\phi}$ меньше допуска на радиус ρ желоба, то включается поперечная подача $t_{vin} = W_{in}$, равная износу W_{in} (рис. 1, А-А, V). При большей погрешности – производится правка круга.

При шлифовании алмазными кругами, в режиме скоростного шлифования, круг правится по радиусу $\rho_{kmin}=\rho_{ki3}=2,96$ мм (рис. 2, а) при максимальном угле скрещивания осей $\psi_{2max}=18,2^{\circ}$. При этом получаем минимальный центральный угол $\alpha_{imax}=37^{\circ}$ круга, что повышает его стойкость при износе.

Разработаны новый способ шлифования торовых поверхностей, стабилизирующий износ профиля круга, и трехмерные геометрические модели процессов съема припуска, формообразования, профилирования абразивных кругов и их износа. Предложен метод управления процессом шлифования на станках с ЧПУ, который обеспечивает съем припуска по эквидистантным кривым при постоянной глубине резания по координате обработки за счет синхронного управляемого поворота круга при поперечной подаче, что повышает производительность шлифования и стойкость кругов.

Литература

 Кальченко В.И. Шлифование криволинейных поверхностей крупногабаритных деталей. – М.: Машиностроение, 1979. – 160 с.

2. Способ шлифования желоба на круглой детали: А. С. 1301660 СССР, МКИ В24В 19/06./ В.И. Кальченко, А.Г. Шеша. Опубл. 07.04.87, Бюл. №13.– 4с.

3. Кальченко В.В., Рудик А.В., Пасов Г.В., Лясота В.Ю. Заточування торцевих фрез на верстатах з ЧПК з урахуванням зносу // Технічні науки – Вісн. Черніг. держ. технол.ун-ту, 2001. - №12. С. 89-95.

4. Филимонов Л.Н. Высокоскоростное шлифование. – Л.: Машиностроение, 1979. – 248 с.

5. Решетов Д.Н., Портман В.Т. Точность металлорежущих станков. – М.: Машиностроение, 1986. – 336 с.

6. Дьяконов В. Math CAD 2000: учебный курс - СПб; Питер, 2000, - 592 с.