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Urgency of the research. Nowadays robotics and mechatronics come to be mainstream. With development in these are-
as also grow computing fastidiousness. Since there is significant focus on numerical modeling and algorithmization in kine-
matic and dynamic modeling.

Target setting. By automation of whole process of dynamic model design the errors are eliminated as well as the time of
designing significantly decreases.

Actual scientific researches and issues analysis. Designing of dynamic model by analytical way is very difficult espe-
cially in the cases considering high number of DOF. For hyper-redundant manipulators it is practically impossible. From
this reason whole process is automatized.

Uninvestigated parts of general matters defining. The theory of Euler — Lagrange method is automatized by means of
robotic view on this issue.

The research objective. In the paper, an algorithm for design of dynamic model was introduced.

The statement of basic materials. The paper deals with automatic design process of dynamic model for serial kinematic
structure mechanisms. In the paper Euler — Lagrange formula is discussed. Analytical way of dynamic modeling should be
difficult problem especially for mechanisms with high number of degrees of freedom. From this reason the paper shows the
way of automatically designing of dynamic modeling in MATLAB. Our study shows dependence of computing time on in-
creasing DOF. The relation is expressed by function of 3rd order. Subsequently the paper presents automatically generated
inverse dynamic model in cooperation with inverse kinematic model as well as trajectory planning task.

Conclusions. The paper introduces automatically generated dynamic model for mechanisms with serial kinematic struc-
ture. The paper also established the time for designing of dynamic model for several mechanisms with changing DOF.
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Introduction. In general, dynamic model describes the relationship between force (tor-
ques) and motion of investigated mechanism. Mathematical — dynamic model — is important
part of designing of mechanisms and robots in order to its motion simulations, optimization as
well as control algorithm design [1]. Many prior works have been done in the research field of
dynamic modeling [2]-[4]. A researchers working in the area of robotics are also focused on
the computational efficiency of robot control systems [5][6]. For robot dynamic description
two main methods are usually used, namely Newton — Euler method and Euler — Lagrange
method [7]. This paper deals with the second of them. The aim of the paper is to implement
theory of Euler — Lagrange method in computing algorithm for simplification of dynamic
model designing especially for mechanisms with high number of DOF.

The paper is divided as follows. The 2™ chapter deals with Euler — Lagrange method. The
3" chapter presents the algorithm for dynamic model design. This process is numerically simu-
lated for nine mechanisms with different DOF. Next, the relation between computing time of
simulation and increasing number of DOF is presented. Subsequently, following chapter shows
the example of automatically designed dynamic model on planar mechanism with 6 DOF.

Dynamic model — Euler — Lagrange Method. In consideration of dynamic model there
are two basic problems, namely forward and inverse model. The forward dynamic model
computes the joint accelerations and others kinematic variables like velocity and position,
while generalized forces (torques) are given. The inverse dynamic model computes of forces
(torques), while kinematic variables (acceleration, velocity, position) are known.

Both methods, Newton — Euler as well as Euler - Lagrange have different base. Neverthe-

less, both methods result in the same generalized dynamic equation

M(q@)q + C(q,9)q +Dq +g(q) =T, (1
where M is matrix of inertia M € R®*™, C is matrix of Coriolis and centrifugal forces C € R"*™,
D is diagonal matrix considering friction D € R™*™, g is vector of gravity forces g € R™, T is vec-
tor of torques T € R™ and q € R" is vector of generalized variables. Parameter » represents num-
ber of DOF of investigated mechanism.
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In the following section introduces the theory of Euler — Lagrange method. As have been
mentioned above, the method arises from kinetic and potential energy what by equation (2) is

expressed
oL oL
V=5 (5) o 2)

where 1); represents extern and dissipative generalized forces. The function L(q, c'I) =
K (q, Q) — P(q) represents Lagrange function. The equation (2) is
d (0K\ 9K , 9P
V=g (o) 5t ®
The final kinetic and potential energy of investigated mechanism is expressed by sum of
kinetic and potential energy of all mechanism links

K =2 K 4
P =Y P 6))
Kinetic energy of i-th link can be expressed as follows
K; = %miVZchi + %w?RiliR?wi (6)
. ;T ; T . .

K= 24" 5y [madd" @i (@) + 5" (@RIRTTL ()] (7

K' = l‘I'T'L'VC’I-;'VCL' + %w’{RlllR’{wl (8)

K = 12 Mij(‘l)ql"?j )

where R; is rotational matrix between fixed frame of mechanism and i-th link, I;is matrix of
moments of inertia, J;, and J;, are Jacobians for linear and revolute velocity.
Potential energy of i-th link can be expressed as follows

P =], g'pdm=g"[ pdm=gp;m (10)
where = [0 —-9.81 0] " Total potential energy is now
P = Zl 1g Pcsm (11)
Lagrange function is then
1 .
L=K-P =3 ?=1Zn=1Mij(q)Qin — 218 Py (12)
aL _ AK
a:aqk— n_ -1 My;q; (13)
LOL g My + S T g = T My, + Xy X (14)
dt 9y, k]% j=1 dt QJ kj% i=14&j=1 6q QLQJ
oL 6Ml P
. oM 16Ml P
7oy My +zi=127=1[aq’j’ A ’] Gudy + 5 = P (16)

By following substitution
OMy;(q)  19M;;(q)

hyji(q) = 24 2 oux (17)
]
(@ =772 (18)
one obtains
2l My (@ + X7 Xiq hii (@ qiq; + gi (@) = Py (19)
Equation (19) can be now written in the form
M(q)4 +C(q. 9)q+Dq +g(q) =T (20)
where matrix C can be expressed as
Crj = Xi=1Cijqi (21)
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The parameters in the equation (22) are so called Christoffel symbols.

Algorithm of Automatic Designing of Dynamic model. The increasing number of DOF
significantly increases the fastidiousness of dynamic model designing by analytical way. With
consideration of kinematically redundant mechanism the inclination to the dynamic model de-
signing failure is too high. Therefore it is desirable to design system for automatic designing of
dynamic model. The contribution of this paper is to introduce the algorithm which simplify dy-
namic model designing.

Introduced algorithm considers the mechanisms with serial kinematic structure so called
open chain mechanism. It could be used for planar as well as three-dimensional mechanism.

Cijk = (22)

Algorithm: Design of Dynamic Model

1: Definition of basic parameters of links like weight 7, length L, number of links
N. Definition of kind of friction and friction coefficients in the joints,
definition of rotational matrices R;
2: Computation of COG (center of gravity) positions for particular links from the
fixed base
3: Computation of Jacobians for linear J% and revolute J%, motions

4: Computation of potential energy for particular links
aP(q)
dqxk

6: Computation of inertia matrix by relation Y1 ; [mi]f,T (@Ji(q) + ]i,T (QR;IRTJE (q)]
7: Computation of matrix of Coriolis and centrifugal forces by cycles FOR

5: Computation of vector of gravity forces by relations P = .7, gTp.;m; and

FOR/=1TON
8: FOR /=1 TON
9: FOR =1 TON
1 6Mk]- IMy; aMi]-
10: Cijk = E a_lh a_q] — m]
11: END FOR
12: Cij = Xi=1 Cijdi
13: Cijk
14: END FOR
15: END FOR

When basic parameters are defined in the step 1, the output of this point is the matrix of
inertia M(q), matrix of Coriolis and centrifugal forces C(q,q) and vector of gravity forces
g(q). Matrix of friction forces if manually given by user according to kind of friction in the
joints. The advantage of the algorithm is generalization and therefore doesn’t how many links
mechanism has. User only sets the number of links.

Mentioned algorithm will be now tested for mechanisms with different number of DOF.
This section shows how the fastidiousness of dynamic model designing increases with in-
creasing number of DOF. The simulation is focused on computing time of designing of dy-
namic model in dependence on increasing number of mechanism DOF.

The parameters of testing PC is Intel Core 13-4000M CPU 2.40 GHz, RAM 4,00 GB, OS:
Windows 7 x64. The algorithm has been run in software MATLAB 2013a. Considering each
DOF for mechanism, the simulation has been performed 10 times for each DOF. Final com-
puting time was stated as average value of all 10 simulations for each DOF. The results of all
simulations for all investigated mechanisms in the Figure 1 are shown.
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Fig. 1. Increasing computing time for dynamic model design
in dependence on increasing DOF of mechanism

The function of increasing time in dependence on increasing DOF of mechanism can be

also expressed by polynomial function of 3 order
y =0,0191x3 — 0,1025x% + 0,3757x — 0,3647. (23)

Let’s now consider kinematically hyper-redundant mechanism what can be for example
continuum robot. Considering the equation (23) as well as the same PC parameters, the com-
puting time for mechanism with 30 links 434,3563 s and for mechanism with 100 links
18112,206 s. It has to be also noticed the impossibility of human designing of dynamic model
for mentioned mechanisms.

Example of algorithm utilization for inverse dynamics.

This section deals with study case of dynamic model designing by introduced algorithm
with consideration of inverse kinematic model and trajectory planning path of kinematically
redundant mechanism. Within this study will be investigated planar mechanism.

The aim of following task is finding generalized forces (torques) in order to move end-
effector from its start position to the goal position. Input to the system is point P € R™. Point
P are the points of required end-effector position at the end of the motion.

At first, we need to use inverse kinematic model for computation of final positions of mecha-
nism joints q € R™. Next, the trajectory has to be planned for particular links. For this operation
will be used polynomial of 5 order. Polynomial of 3™ order withholds opportunity to set initial
and goal conditions for acceleration / deceleration of particular links during its motion.

The output of trajectory planning task is matrix of angular positions € R**™ | matrix of
angular velocities Q € RE*™ and matrix of angular accelerations Q € RE* ™. Parameter ¢ is
number of points which are placed between initial and goal position of end-effector. The out-
put this task is the input to the inverse dynamic model block, see Figure 2. The output of in-

verse dynamic model block are torques T € R" in the vector form.
Qe Re*™
Qem*"

) P € R™ qER" _ Qem " T ER
fﬁ: Inverse Trajectory Inverse
= Kinematics planning dynamics

Fig. 2. Flow of task

The Figure 3 shows start and goal configuration of links of investigated mechanism with
6 DOF. Initial angle for all joints is 0°. The goal position of end-effector is point [1, 2].
Length of all links is L = 1 m.
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Fig. 3. Start and goal links configuration of mechanism

Damped least squares method is used for inverse kinematic model computation. The result
of inverse kinematic model is vector of generalized variables q. The Figure 4, Figure 5 and
Figure 6 show the result of trajectory planning block. AS have been mentioned, the trajectory
planner used polynomial function of 5™ order.

60
— k] e
= — k2 / —
o 40K k3 -~ 1
s — / :
= —— link5
8 20+ link & /
e ‘
8 d /
2 0 «—)é/
< \
\
20 10 20 30 40 50 60
Time [s]
Fig. 4. Trajectory planning - Angular positions
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Fig. 5. Trajectory planning - Angular velocities

93



Ne 3 (13), 2018 TEXHIYHI HAYKH TA TEXHOJIOTII
TECHNICAL SCIENCES AND TECHNOLOGIES

0.1

o — k]
K — k2
g ik 3
D, 0.05r#~ — k4 ]
c link 5
2 link &
o

a 0

[

Q

Q

©

§-005

3

o

=

< ; ;

0.1 ‘ \
0 10 20 30 40 50 60
Time [s]

Fig. 6. Trajectory planning - Angular accelerations

As can be seen from the Figures 4, 5 and 6, the simulation assumed zero initial and goal
conditions. According to Fig. 2, the output is inverse dynamics what is in our case vector of

required torques, see Figure 7.
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Fig. 7. Result of the simulation - Required torques
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The simulation lasts 60 s. Of course, the lower time of the simulation would be, the higher
torques would be required in order to achievement of required vector of generalized variables
and its derivations.

Conclusion. The paper dealt with one of two basic approaches for dynamic model design-
ing Euler — Lagrange method. The algorithm for automatic designing of dynamic model is
developed and numerically tested. The algorithm is programmed in MATLAB and tested on
planar mechanisms with six degrees of freedom. Also the paper states the dependence of in-
creasing computing time on increasing DOF of mechanism. The contribution of the paper in
the form of computational algorithm is tool for engineering research. Designed dynamic mod-
el by this algorithm can be then used for optimization and control task.
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AJI'OPUTM EﬁJIEPA-JIAFPAH?KA JJISA ITPOEKTYBAHHSA
JUHAMIYHOI MOJEJII

Axkmyanvhicmbs memu docnioxcenus. B nawi OHi pobomomexHika i MexampoHika cmaroms MeuHCmpumom. 3 po3eum-
KOM YUX 2any3eti MaKoic 3p0CMaromy 8UMOSU 00 0OYUCTIOBANLHOT MEXHIKU, OCKIIbKU OCHOBHA Y8a2a NPUOLIAEMbCS YUCelb-
HOMY MOO€IOBANHIO U AI2OPUMMIZAYIL 8 KIHeMAMUYHOMY Ma OUHAMIYHOMY MOOETIOBAHHI.

ITocmanoexa npoonemu. [lpu asmomamusayii 6cb020 npoyecy nPoeKny8anHs OUHAMIYHOL MOOeN YCy8armbCs NOMUI-
KU, @ 4ac npoekmy8anHs 3HA4HO 3MEHULYEMbCSL.

Ananiz ocmannix oocnioxcens i nyonikayiii. [Ipoexmysants OUHAMIYHOT MOO€I AHATTMUYHUM CNOCOOOM Oydice CKa-
OHULL npoyec, 0COONUBO Y BUNAOKAX YPAXYBAHHI 2IUOUHU 300paAXHCYBAHO20 NPOCMOPY. [N 2INEPHAOIUWKOBUX MAHINYIAMOPI6
ye npaKmuIHo HeMONCTUGO. 3 Yici NPUYUHU 8eCb NPoYeC agMOMamu308aHU.

Buoinenns nedocnioycenux wacmun 3azanvhoi npoénemu. Teopis memooy Eiinepa-Jlacpansica asmomamuzosana 3a
00NOMO2010 POO6OMU308AHO20 NOTAOY HA Ye NUMAHHA.

ITocmanoeka 3aedannn. Y cmammi 6y8 3anponoHO8aHULE Al120pUMM NPOEKMYEAHH OUHAMIYHOL MOOeJI.

Bukxnao ocnosnozo mamepiany. Y cmammi po3anioacmsca npoyec asmoMamu308aH020 NPOeKny8aHHs OUHAMIYHOT
MOOeni Mexauizmi 3 NOCIIO08HOK KiHeMamuyHoi cmpykmypoto. Y cmammi obeosoproemuvcs popmyna Eiinepa - Jlazpanica.
Ananimuynuii cnoci6 OUHAMIYHO20 MOOETIOBAHHSL 3A8HCOU € CKILAOHOIO NPOOIEMOI0, 0COOMUBO OSL MEXAHIZMIG 3 BEIUKOI0
KIbKICIio cnynemie c60600u. 3 yiei nputuny 6 cmammi ROKA3aHull CROCIO agmomamu308aHo20 NPOEKNY8aHH OUHAMIYHOT
mooeni 6 MATLAB. Hauie 0ocnioscenHs nOKA3YE 3aNeHCHICMb Yacy 0OYUCieHb 6i0 30inbuleHHs cmynens ceoboou. 3anedrc-
Hicmb € @yHryielo 3-e0 nopaoky. Hacamkineyv 6 pobomi npedcmasieHa asmomMamuyHo CMEopeHa 360pOMHA OUHAMIYHA
MOOeb 8 KOMIIEKCE 3i 360POMHOIO KIHEMAMUYHOIO MOOEILNIO, 4 MAKONC 3a80AHHS. NIAHYBAHHSI MPAEKMOPIL.

Bucnoeku 6i0nogiono 0o cmammi. Y cmammi HageOeHa a8momMamu308aHO CIMEOPEHa OUHAMIYHA MOOeNb Ol MeXaHi-
3MI6 I3 NOCTIO0BHOIO KIHEMamuyHoi cmpyKkmypoio. ¥ pobomi maxoxc Oyno 8UsHa4eHo yac O1s po3pooKu OUHAMIYHOL mMooeni
0151 OEKINbKOX MEXAHIZMIS 31 3MEHHUM YUCTOM CHIYNEHI8 GOIL.

Knrouosi cnosa: ounamiuna mooens, Eiinep-Jlacpauic; KiHeMamuyHO-HAOTUUKOBUTI MEXAHIM.
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