УДК 621.923.42

Кальнченко В. В., докт. техн. наук, професор
Венежа В. І. канд. тех. наук, доцент
Литвин О. О., аспірант
Кальнченко Д. В., магістр

Чернігівський національний технологічний університет, xpower4718@gmail.com

ДОСЛІДЖЕННЯ ПРОЦЕСУ ДВОСТОРОННЬОГО ШЛИФУВАННЯ ТОРЦІВ РІЗНОГО ДІАМЕТРУ КРУГАМИ З КАЛІБРЮЮЧИМИ ДІЯНКАМИ ТА БЕЗ НИХ

В багатьох галузях, а саме: верстатобудуванні, автомобілебудуванні, сільськогосподарському машинобудуванні, виробництвах, де необхідне забезпечення високої точності поверхонь деталей з різними диаметрами торців, потрібно дотримуватися високих вимог по якості, що передаються до геометричних розмірів, шорсткості та точності формоутворення. А також, є за необхідне підвищувати і продуктивність обробки. Шлифування торцевих поверхонь деталей з різними діаметрами торців, здійснюються на двосторонніх торцешліфувальних верстатах. Шлифування та інші фінішні операції являють собою складні процеси.

Відомий спосіб одночасного шлифування стержневидних деталей [1]. Недоліком способу є те, що шліфувальні круги не мають калібруючих діяних.

Відомий спосіб одночасного шлифування двох торців циліндричних деталей [2]. Недоліком способу є те, що не розглядається обробка деталей з різними діаметрами торців.

Перед обробкою деталю з торцями різних диаметрів на двосторонніх торцешліфувальних верстатах, спочатку визначається величина припуска, що зінімається при шлифуванні. Якщо припуск невеликий, то доцільно виконувати обробку орієнтованими шліфувальними кругами без калібруючих діяних [3], та без обертання деталі навколо власної вісі. Якщо потрібна більша точність формоутворення, використовують спосіб з обертанням деталі. У випадку обробки деталей зі зняттям великих приpusків, перевіряється можливість обробки орієнтованими шліфувальними кругами без калібруючих діяних з одноствороннім розташуванням торців одного диаметру [4]. Даний варіант обробки обираємо, якщо похибка на торці більшого діаметра не більше допустимої. Для забезпечення обробки деталей за один прохід та необхідної точності обробки, при великосерійному та масовому виробництві використовується спосіб шлифування орієнтованими кругами з калібруючими діяниках з одноствороннім розташуванням торців одного диаметру. Калібруючі діяники при цьому робляться різної довжини, в залежності від діаметру, відповідно більшого та меншого. Розрахунок точності формоутворення деталей здійснюється за програмою універсальної моделі точності формоутворення деталей з торцями різних діаметрів.

Підвищення точності обробки торцевих поверхонь деталей різних диаметрів шліфувальними кругами, досягається тим, що формоутворення торця меншого діаметра виконується максимальним діаметром плоского торця одного круга, а формоутворення торця більшого діаметру – калібруючою діянакою другого круга, довжина якої дорівнює діаметру більшого торця і заправлена алмазним олівцем, вісь якого переміщується по радіусу, який співпадає з радіусом розташування осей деталей в барабані подаці. Цей спосіб спрощує правку шліфувального круга. Не потребує спеціальної правки, дозволяє використовувати штатну правку.

На рис. 1 показано розрахункову схему шлифування торців різних діаметрів. На рис. 2 зображено штовхач газорозподільного механізму двигуна внутрішнього згорання.
Рис. 1 – Розрахункова схема шлифування торців різних діаметрів: 1 – барабан подач виробів, 2 – призма, 3 – заготовка, 4, 5 – шлифувальні круги, 6, 7 – шлифувальні бабки, 8 – пристрій для правки торцевих ділянок шлифувальних кругів, 9 – сферичний шарнір, відносно якого відбувається поворот кругів, 10 – калібруюча ділянка шлифувального круга, що обробляє торці більших діаметрів.

Рис. 2 – Штовхач газорозподільного механізму двигуна внутрішнього згорання

На рис. 2 вказані D діаметр більшого торця заготовки та діаметр d меншого торця заготовки.

Список посилань

1. Деклараційний патент 10636 Україна на винахід (корисну модель), МПК В24В5/04. Спосіб одночасного шлифування двох торців циліндричних деталей / Кальченко В.В., Жадан О.В.; заявник та патентовласник Кальченко В.В., Жадан О.В. – № u200505125 ; заявл. 30.05.05; опубл. 15.11.05, Бюл. №1.

2. Деклараційний патент 2417148 Російська Федерація, МПК, В 24 В 1/00, В 24 В 19/00. Спосіб шлифування стержневидних обробляваних деталей, шлифовальний станок (варіанти) і шлифовальна секція спареного розташування / Химельській Георг (DE), Мюллер Хуберт (DE); заявитель і патентообладатель Эрвинмонкер Грайндінг Технолоджи А.С. (CZ) - № EP 2007/001183, заявл. 12.02.2007 опубл. 27.04.2011 Бюл. № 12
