Advances in Information Science and Applications - Volume |

Two stage strategy of job scheduling in grid
environment based on the dynamic
programming method

Volodymyr V. Kazymyr, Olga A. Prila

Abstract—The problem of the effective usage of the grid
environment for solving different types of computing tasks of large
dimension is researched in the paper. We study the problem of
optimal task scheduling at an affordable set of resources on the one
hand and the equitable distribution of resources between the tasks
that come into the input queue of a centralized workflow
management system, on the other hand. Two stage strategy of task
scheduling in grid environment that takes into account user-defined
QoS requirements, structural features and execution dynamicity of
the task is presented. The dynamic programming method application
to the workflow scheduling problem is proposed in the paper and the
effectiveness evaluation experimental results of the proposed
decision are given.

Keywords—Grid, workflow, scheduling, QoS

1. INTRODUCTION

CURRENTLY grid technologies are actively developed and
applied to solving of complex high-dimensional problems.
The problem of task adoption for effective execution in the
grid environment is rather complex itself. Abstract features of
using of the grid-infrastructure for different types of tasks’
execution based on their structural but not functional features
can be determined.

The actively developing field in the grid-computing is the
technology of workflow execution in grid-environment. The
workflow represents the task as a sequence of subtasks with
certain synchronization scheme. The presence of several
parallel blocks in such tasks allows to execute them on
different resources for more efficient problem solution. To
provide such a solution several factors should be taken into
account and the most important of them is the expenses for
data exchange between utilized resources. Workflow
scheduling is an NP-complete problem in general [1].

Another component that is very important for grid end-users
is the ability of a grid system to provide its consumers with the
required quality of service (QoS). It results in the need to

V. V. Kazymyr, Dr. Sc. Prof. Chernihiv State Technological University,
Shevchenko street, 95, Chernihiv-27, Ukraine, 14027; e-mail:
v.vkazymyr@gmail.com.

O. A. Prila, postgraduate, the assistant lecturer, Chernihiv State
Technological University, Shevchenko street, 95, Chernihiv-27, Ukraine,
14027; e-mail: olga.prilal 986@gmail.com.

ISBN: 978-1-61804-236-1

7

allocate task on a set of resources which is most suitable for its
execution depending on the QoS information provided by the
resources. While for non-commercial community grids it is
limited to estimate completion time (ECT), commercial utility
grids can also operate with costs of calculations and some
other parameters.

The paper is dedicated to the research of the aspects of
scheduling different types of tasks in grid-environment paying
much attention for the workflow scheduling problem. Another
research problem is the strategy of the central queue of grid
tasks processing according to their priorities and QoS
requirements.

The complex two stage strategy for tasks’ queue processing
and task scheduling next is proposed in the paper.

II. THE FORMALIZATION OF THE TASK OF SCHEDULING
DIFFERENT TYPES OF JOBS IN GRID ENVIRONMENT

One of the factors influencing the performance of the grid-
network is planning efficiency. Taking into account the
heterogeneity of grid-resources, as well as the structural
features of tasks, the following factors should be understood
under the scheduling efficiency.

1) Equable load of all the grid computing elements.

2) The minimal tasks’ downtime in the run queue.

3) The minimal execution time of tasks on a dedicated set of
resources, including the time required for data transfer
between computing blocks.

The classification of the tasks which are calculated in the
grid-environment according to the structural criterion has been
suggested by the authors [2].

The execution effectiveness of the task represented by a
single computing unit or a set of consistent, depends on the
effectiveness of its program implementation, planning
strategies of the low-level grid brokers and local scheduler.

If the task is represented by a set of similar tasks with
different input data, scheduling optimization reduces to
decomposition of the task according to the current options of
grid-infrastructure.

The presence of parallel blocks in workflow tasks allows
executing them on different resources for more efficient
problem solution. To provide such a solution the expenses for
data exchange between utilized resources should be taken into
account.

Advances in Information Science and Applications - Volume |

The expenses for data exchange can be eliminated by
clustering several blocks of workflow for the same resource.
There is a concept of linear and nonlinear clustering [1], when
serial or parallel blocks are grouped respectively. The
optimization problem is reduced to finding the optimal
solution between parallelization and clustering.

Workflow task is generally modeled by a precedence-
constrained task graph, which is a directed acyclic graph with
nodes representing the subtasks and the directed edges
representing the execution dependencies between them as well
as the amount of communication (see Fig. 1).

For effective workflow scheduling the following subtask
parameters must be defined:

{ECT, Memory, {T}},

where ECT - estimated completion time;

Memory — memory requirements;

{T} set of links to other
communication between nodes).

stm DAG /

modules

(one-way

{ECT, Memory {T}}

/ N
data capacity [100] data capacity [10]

time period [20]

AN /
data capacity [200] data capacity [50]

Fig. 1 the example of workflow task structure

Each relationship is defined by the data capacity parameter
— the amount of data transferred between the units. The
relationship between Unit2 and Unit3 determines the need for
periodic synchronization of data between the units that are
executed in parallel.

The complex type of the task which includes the
characteristics of several types should be considered
separately. There may also occur a particular case of type three
when the task is decomposed into totally independent parallel
subtasks. In the latter case the process of adaptation to grid is
significantly simplified due to the absence of necessity of
synchronization between the calculation blocks.

For effective execution in the grid-environment the
following limitations are imposed for the workflow structure.
1) Lack of loops and branches. These limits are determined

by the task structure presentation in the form of an acyclic
directed graph. However, the task structure having loops

ISBN: 978-1-61804-236-1

78

can be converted to DAG by adding an additional level.
Branching can be handled at the level of metascheduler
through the dynamic approach to planning.

High level of task granularity. The dimension of
calculations should be much higher in relation to the

2)

dimension of the transmitted data [1]. In [3] the
granularity problem is defined as follows:
g =min{r, /maxic, ;}}, (1)
x=lv J o

where 7, — computational complexity of node 7_;

c. .— dimensionality of the data being transferred

X,
between nodes 7, and 7 IE

v — the number of computing nodes of the task.
Grid-network structure can be presented as a complete
directed graph where vertices define the resources, and the
weight of arcs define bandwidth computer network (see Fig.

2).
stm DAG

| || {CPU, Memory,Cost,{R1,R2}} |
7

Computing
Element 1

bandwidth
oy’

/ /[101

Computing
Element 2

\ \bandwidth
r10] [101

[5]
bandwidth
5]

Computing

Element 3

Fig. 2 grid-structure example

Each unit of the grid-net structure is characterized by the
following compulsory parameters.

{CPU, Memory, Cost, {R1,R2}},

where CPU — computational power, Memory — memory
characteristics, Cost — usage cost, R1 — receive data network
bandwidth u R2 — data transmission network bandwidth.

The optimization task presupposes working out an optimal
variant of the stream of jobs arrangement on the available set
of resources.

The classification of jobs scheduling according to the
following criteria is presented in [4]:

{a|Bly|d},
B:{Bl|Bz|Ba},

where & — determines the characteristics of the distributed
environment (homogeneous / heterogeneous);

@)

B the job specifications and the presence of
limitations in the job structure;

Advances in Information Science and Applications - Volume |

'81 — presence of relation between the job computing
units;

1 2 — homogeneity / heterogeneity of the job computing
units;

B, — presence of time limitations of the job computing
unit irrespective of the results of the units connected with it;

7 _ determines the optimization criterion and the type of
the objective function;

O _ determines the expenditure function of the
distributed environment resources interaction in job
performance.

According to the classification suggested the job scheduling
in the grid-environment is determined the following way

{R|PREC,2, r,|C,,. | JP}, 3)

ax

where R — determines the heterogeneity of the distributed
environment resources; the time of the job computing unit
performance is the power function of the distributed
environment unit;

PREC _ the presence of relations between the job
computing units;
& — the job units have different computing complexity;

© — there are time limitations as for the beginning of the
job computing unit;

Conax — the objective of the job scheduling is the

minimization of the time of job performance;

JP _ the expenditures on the distributed environment
units interaction are determined by the parameters of the
network bandwidth, as well the job specifications (the level of
transmission data between the computing units).

The suggested classification does not take into account the
multicriterion characteristic of the objective function.
However, besides the job performance time, the competitive
criterion, computing cost, is significant for the commercial
grid-environment. The task of jobs streams scheduling in the
grid-environment is generally NP-total task.

At the middleware level grid does not provide full support
for the tasks of different types. For instance, ARC Nordugrid
(http://www.nordugrid.org/) and gLite (http://glite.cern.ch/),
which are on the list of the main providers of grid middleware
in EMI (http://www.eu-emi.eu/) and which are widely used by
the Ukrainian national grid-infrastructure make use of the
following formats of the grid-tasks specifications: JSDL [5],
xRSL [6] and JDL [7]. Among the mentioned JDL-format is
the only to introduce the notion of the task type (Job, DAG u
Collection), which still has certain limitations the
determination of the periodic synchronization between the
units and the data transmission levels is impossible. JSDL and
xRSL formats provide just means of determining the
parameters of some tasks; however, the jobs stream life-cycle,

ISBN: 978-1-61804-236-1

79

as well as the relations between certain tasks, is not supported.
Middleware grid brokers realize simplified scheduling
strategies and do not allow performing jobs stream scheduling
taking into consideration the tasks specifications and QoS
parameters. For instance, ARC Nordugrid broker realizes the
following strategies of the available computing resources
selection: RandomBroker, BenchmarkBroker,
FastestQueueBroker, DataBroker [6]. The latter means that the
mechanisms of complex grid-tasks scheduling are to be
realized and arranged beyond the middleware grid level.

III. THE STRUCTURE OF THE METASCHEDULER OF THE
CENTRALIZED WORKFLOW MANAGEMENT SYSTEM

An important component of the use of the grid-environment
is to provide its consumers with the required level of quality of
service (QoS).

In addition to finding the optimal schedule of workflow task
on the set of available computing resources, the important
aspects of the metascheduler are: a) the strategy of processing
the input queue of tasks in accordance with their priorities; b)
the choice of the scheduling algorithm according to the
structural features of the problem; c¢) dynamic control of task
execution; d) accounting the dynamicity of grid-network as
well as the level of quality of service of grid resources.

Below we consider the metascheduler implementation
aspects which are an integral part of the centralized workflow
management system. Lack of the centralized approach, which
consists in the possible occurrence of bottleneck, is assumed to
be eliminated through the scalable workflow management
system architecture.

This paper introduces a two-stage strategy for task
scheduling in grid environment. The first stage involves the
processing of the input queue of tasks in accordance with their
priorities and QoS requirements. The second phase involves
task scheduling at the affordable set of resources taking into
account the structural features of the task.

Below we consider the approaches to scheduling the
workflow task on the set of available heterogeneous grid-
resources as well as strategies for handling the input queue of
tasks of different types accounting the dynamicity of their
execution.

IV. DYNAMIC PROGRAMMING METHOD APPLICATION TO THE
PROBLEM OF WORKFLOW SCHEDULING

In [1, 8 9] the classification and the results of the
algorithms’ effectiveness and complexity evaluation are given.

The methods of search in the space of states and methods of
mathematical programming can produce optimal solutions, but
in general are characterized by high computational complexity
of the algorithm. Heuristic approaches can give effective
solutions in polynomial time, but in general these approaches
do not provide the optimal solution, as the average, the worst
and the best performance of these algorithms is unknown [1].

Clustering (DSC, CASS-IT [10]) and replication (TDS,
TANH [11]) approaches aimed at reducing the time required

Advances in Information Science and Applications - Volume |

for data transfer between nodes by placing tasks that require
the exchange of large amounts of data on a single resource or
duplicate blocks, respectively [9]. The disadvantages of these
approaches is the difficulty of accounting the heterogeneity of
the subtasks, and the lack of opportunities to use several
resources grid-network for parallel blocks task.

An important aspect of the use of commercial grid-
environment is the need to optimize the characteristics of
mutually exclusive - resource cost and execution time taking
into account the significance of the coefficients of each of the
characteristics. Most heuristic scheduling algorithms focus on
improving one of the criteria. Today, the only workflow
scheduling algorithm that solves the multiobjective
optimization problem is the LOSS / GAIN algorithm [8].

Many of the existing scheduling algorithms impose some
restrictions on the structure of the problem, the structure of
grid-network optimization criteria.

Dynamic programming method is one of the methods of
mathematical programming, applied to the problem with
optimal substructure. Optimal substructure problem assumes
that the optimal solution of its constituent smaller subtasks can
be used to solve the original problem [12].

The algorithm introduces the concept of levels in the
structure of the problem of the "work flow", which is
determined by a variety of tasks that can be performed
simultaneously at a certain stage of the task. For example, a

workflow structure shown in Fig. 1 may be allocated to the
following levels: 1) {Unit 1}; 2) {Unit 2, Unit 3}; 3) {Unit 4}.

Optimal solution contains optimal solutions at every level,
and, therefore, the task has the property of optimality [16].

The objective function of the algorithm can be determined
by several parameters that have some weight. Accordingly, the
objective function might look as follows:
y =k, -time +k, -cost 4

where k;, k, - user-defined coefficients of QoS parameters;

time — task execution time;

cost - the cost of computing resources usage.

The flowchart of the algorithm is shown in Fig. 3.

As it can be seen from the flowchart, at each level for each
allocation variant the optimal solution is saved regarding the
allocation cost as well as the cost of interaction with the blocks
of the previous levels. Inefficient solutions for each location
are discarded and will not be further considered. At the last
step of the algorithm the global optimal solution is determined
moving backward from the bottom up through the levels. It is
recommended to store a copy of the accommodation plan
ordered by the value of the objective function, which can be
used for dynamic rescheduling problem if necessary.

In the case of existence of the “through the level”
communication link the “dummy" block of zero computational
complexity is assumed to be added.

actDAG /

Start

«datastore»
Define maxL

i

«datastore»
L=1

Determine the value of the
objective function for each
variant

each variant

«datastore»
L++

Determine parallel units and
corresponding levels

i
Define unit allocation possible
variants

Save the minimum value of
the objective function for

Moving upwards summarize
objective function for all
saved variants

Sort and save result ways
according to minimal value of
objective function

Final

Fig. 3 the QoS-based scheduling algorithm flowchart

ISBN: 978-1-61804-236-1

80

Consider the example of the algorithm for the workflow

Advances in Information Science and Applications - Volume |

shown in Figure 2 and the network structure shown in
Figure 3.
For the simplicity we take the objective function as
f(time) — min)
The input data is represented in a table structure (see Table
1-2).
Table 1. Workflow structure

1 [2 3 4

ECT

1 # 1100 |10 |[# 500k

2 |# |# # 200 | 2000k

3 | # | # # 50 100k

4 # # # #
Table 2. Grid network structure
0 1 2 CPU

100k

0 0 10 10 100k/time

1 10 0 5 50k/time

2 10 5 0 50k/time

Step 1. Determined levels:

Level 1: Unit 1

Level 2: Unit 2, Unit 3

Level 3: Unit 4.

Step 2. For set Nel define all possible variants of unit
allocation:

UICELl, UICE2, UICE3.

Step 3. Determine the value of the objective function for
each variant.

UICE1: 500k / 100k = 5;

UICE2: 500k / 50k = 10;

UICE3: 500k / 50k = 10;

Step 4. Save the value of the objective function for each
variant.

Step 5. Turn to set Ne 2. Repeat steps 2-4. First, we define
the computational cost for U2 and U3 (for ease of
computation), and then for all possible combinations of the
location of the previous set of blocks.

a) U2CE1U3CE2: 2000k/100k + 100k/50k = 22;

b) U2CE1U3CE3: 2000k/100k + 100k/50k = 22;

¢) U2CE2U3CEL: 2000k/50k + 100k/100k = 41;

d) U2CE2U3CE3: 2000k/50k + 100k/50k = 42;

e) U2CE3U3CElL: 2000k/50k + 100k/100k = 41;

f) U2CE3U3CE2: 2000k/50k + 100k/50k = 42;

The calculated objective function for each combination of
set Ne2 is presented at table 3.

Table 3. The objective function value for each combination of
set Ne2

ISBN: 978-1-61804-236-1

UICE1 UICE2 (10) | UICE3 Min

(&) (10)
U2CEl | 22+5+0+ | 22+10+100/ | 22+10+1 | 28(UIC
U3CE2 | 10/10 10+0 00/10+10 | El)
(22) /5
U2CEl | 22+5+0+ | 22+10+100/ | 22+10+1 | 28(UIC
U3CE3 | 10/10 10+10/5 00/10+0 | El)
(22)
U2CE2 | 41+5+10 | 41+10+0+10 | 41+10+1 | 52(U1C
U3CE1l | 0/10+0 /10 00/5+10/ | E2)
(41) 10
U2CE2 | 42+5+10 | 42+10+0+10 | 42+10+1 | 54(U1C
U3CE3 | 0/10+10/ | /5 00/5+0 E2)
(42) 10
U2CE3 | 41+5+10 | 41+10+100/ | 41+10+0 [52(U1C
U3CEl | 0/10+0 5+10/10 +10/10 E3)
(41)
U2CE3 | 42+5+10 | 42+10+100/ [42+10+0 | 54(UIC
U3CE2 | 0/10+10/ | 5+0 +10/5 E3)
41 10

Step 6. Turn to set Ne 2. Repeat steps 2-4.

U4CE1: 100k / 100k = 1;

U4CE2: 100k / 50k =2;

U4CE3: 100k / 50k =2;

In table 4 we present only the results of calculations.

Table 4. The objective function value for each combination
of set Ne3

a b c d(54) [e(52) | £(54) | Min()

(28) | (28) | (52)
U4C | 28+ | 28+ | 52+ | 54+1 | 52+1 | 54+1 | 34(a)
El 1+0 | 1+0 | 1+2 | +200/ | +200/ | +200/
(1y |[+50 [+50 |00/1 [10+5 | 10+0 | 10+5

/10 | /5 0+0 | 0/5 0/10
U4C | 28+ | 28+ | 52+ | 54+2 | 52+2 | 54+2 | 59(B)
E2 242 | 242 [240 | +0+5 | +200/ | +200/
2) 00/1 | 00/1 | +50 | 0/5 5+50/ | 5+0

0+0 | 0+5 | /10 10

0/5

U4C | 28+ | 28+ | 52+ | 54+2 | 52+2 | 54+2 | 59(xm)
E3 242 | 242 | 242 | 4200/ | +0+5 | +0+5
2) 00/1 | 00/1 | 00/5 | 5+0 0/10 0/5

0+5 | 0+0 | +50

0/5 /10

Step 7. Select the minimum value of objective function for
block 3.

According to calculations

min f(x) = 34 for (U4CE1, U2CE1U3CE2, UI1CE1).

Advances in Information Science and Applications - Volume |

V. THE STRATEGY OF INPUT QUEUE OF TASKS PROCESSING

We have considered the issues of planning a separate task
represented as a workflow at an affordable set of
heterogeneous resources. In this section, we will discuss
approaches to processing and scheduling of various types of
tasks coming into a single input queue of workflow
management system.

In [13] the following existing multiple workflow scheduling
strategies are presented:

1) Scheduling and execution DAGS that are in the input
queue one after another. The disadvantage of this
approach is the ineffective grid resources utilization,
inability to reflect the priorities and the required level of
QoS.

Scheduling and execution of DAGs in accordance with the

criterion of total estimated runtime. Processing order may

be different: the priority for tasks with a minimum
execution time or the maximum. Such approach does not
solve the problem of effective resources utilization and

QoS considering.

Combining multiple DAGs into a single DAG with a

further usage of existing methods of single workflow task

scheduling in a heterogeneous environment.

The four main approaches of merging DAGS are

determined:

1) Combining DAGS by adding a new entry and new exit
“empty” nodes (C1);

A composite graph is created in the same way as before,

but the scheduling is made by the levels for independent

parallel tasks (level-based ordering) (C2);

Scheduling and execution of different computational units

of workflow tasks occur in the style of round-robin: if on

the previous step the task of one workflow was planned
and carried out, then on the next step it will be considered
as the ready task of another workflow (C3).

When combining DAGs into a single workflow structure

the estimated execution time of workflow is taken into

account and merging by introducing additional nodes
occurs at the appropriate level (C4).

Two fairness policies of resources distribution based on

calculating the delay of each workflow while choosing the next

workflow for scheduling have been introduced in [13].
However the merging DAGs approaches and fairness

policies can be applied only to the workflows with the same

priorities.

In [14] a ServeOnTime strategy is proposed and its
efficiency in comparison with the classical approach FCFS is
shown. The strategy is based on adding the new arrived
workflow task to the exiting task of executing workflow. Such
an approach ignores the QoS requirements, and underutilized
resources associated with the occurrence of "gaps" (waiting for
completion of the tasks of the previous level and data transfer).
In [15] a GapSearchScheduling algorithm is presented. The
algorithm is based on finding and filling such gaps by tasks,
the execution time of which is less than the gap size.

2)

3)

2)

3)

4)

ISBN: 978-1-61804-236-1

82

In [16] the input queue deadline coordinator structure is
presented. The deadline driven (DD) coordinator orders DAGs
considering deadlines specified by users. DAG with earlier
deadline is processed first. DAG priority is computed as
inversely to deadline value. The DD-coordinator should verify
that the deadline is realistic.

However, the solution is not complete. Deadline set by the
user must be considered in relation to the estimated execution
time and the arrival time of all tasks.

We suggest the following scheme of tasks priority
evaluation:

P=U,+1/t, 6)

where U, — user task priority set by the policy of appropriate
virtual organization;

t;,—arrival time of task queued for execution.

When sending a task to perform, the user can set the desired
values for the following QoS parameters: restriction to the task
time execution (deadline), cost limit of computing (maximal
cost), as well as the significance of the coefficients of these
parameters.

Taking into account the dynamicity of the grid environment
structure, compliance with user-defined QoS-parameters can
not be guaranteed, but finding the optimal solutions based on
established significance coefficients is guaranteed. Defining
the actual values of QoS parameters is possible by the use of
simulation model of task execution process.

Guaranteed compliance deadline is possible only for the
tasks submitted with advanced reservation policy, and the
preliminary assessment time regarding to the task execution
time is set by the workflow management system administrator.
In the case of low QoS level of available resources replication
approach can be used in addition.

Internal xml task specification format has been developed.
The format allows describing the tasks of different types, as
well as to determine the volume of data transferred between
the computational units of workflow task and periodic
synchronization between the parallel blocks. When the task is
sent to a specific computing resource the task format is
converted to those required by the corresponding middleware.

There are static and dynamic approaches to task scheduling.
Static approach assumes the availability of information about
the current state of grid-network resources and sequence
blocks execute tasks prior to computation. Dynamic approach
takes into account the dynamic grid-network resources, as well
as handles branching in the structure of the problem. However,
this greatly complicates the planning process.

The paper introduces the use of a hybrid approach to
planning, which is to use static methods for primary
distribution, followed by the dynamic regulation of the primary
distribution, taking into account the dynamics of the task and
the state of network resources. Such a scheme is implemented
at the level of the metascheduler through periodic survey of the
state of the network resources, control units perform tasks and
rescheduling tasks when needed.

The system is supposed to have the following task queues.

Advances in Information Science and Applications - Volume |

1) Single Block And Data Parallel Queue — contains the
tasks of the first and the second type. In case of the
resource failure, the task is resubmitted to the same queue
with the highest priority.

2) Workflow Queue — contains workflow tasks.

3) Workflow Tasks Rescheduling Queue contains
computational units of different workflow tasks requiring
rescheduling. Computing unit of any workflow is put into
this queue if the resource that was scheduled for the unit
failed.

Queue processing and tasks scheduling is made in the order
of their priorities. Rescheduling is processed first, and the
rescheduling task is assigned to a suitable free resource or the
nearest "gap" in the schedule of resource employment.

If several workflow tasks have the same priority, they are
merged into a single DAG according to policy C4.

Single DAG scheduling is made using the method presented
in Section 5, with further drafting task’s schedule taking into
account the synchronization between units and graphics of
resources employment.

While scheduling the workflow if the amount of the free
resources is less than the width of the DAG then the estimated
execution time on the set of available resources is compared
with the estimated execution time on the greatest possible

<<Java Class=>>
(®Workflow

variety of resources. If the difference in execution time is less
than the waiting time of deallocation, the task is assigned to
the available resources, or the task is waiting for the release of
resources employed and the optimal schedule for its
implementation since the liberation of resources is prepared.

The tasks of the first and second type are assigned either to
a suitable free resource, or to the nearest appropriate "gap" in
the graph of the resource. "Gap" is considered appropriate if
the estimated execution time of the task is less than gap size of
not more than 80%.

VI. SCHEDULING ALGORITHMS EFFECTIVENESS EVALUATION

The experiments were carried out only for the analysis of
the effectiveness of the proposed single DAG scheduling
method on the available set of resources. Effectiveness
evaluation of the proposed strategy for processing the queue of
tasks taking into account the dynamics of their implementation
requires additional research.

To investigate the properties of scheduling algorithms the
GridSim toolkit [17] was expanded by adding new entities
required for modeling the processes of planning and execution
of workflows in the grid-environment. Implemented modules
class diagrams are shown in Fig. 4-5.

org. simplicategrid . api.entities

-transitions | 0.*

<<Java Class>=
(& Transition

-destination | 0.1

org. simplicategrid . api.entities

<<Java Class>>
(2 Executable
org.simplicategrid. api.entities

-nodes

o image: File

0.x o numberCfOperations: int

o datafmount: long
o outputSize: long

-source

0.1

Fig. 4 the class diagram of the workflow specification module

ISBN: 978-1-61804-236-1 83

Advances in Information Science and Applications - Volume |

<<Java Class>>

<=Java Class>>
(@ Allocation
o simplicategrid. api enfities

(3 AllocationPair
crg.simplicatsgrid. api entties

o executable: Executable

~pairs
[0

o resource: Resource

<<Java Interface=>>
9 SchedulingAlgorithm

arg.gimplicategrid.model.core.alg

@ allocate(Set<Resource> List<Warkflow=):List<Allocation >

==Jlava Class»>
(& ynmamicSchedulingAlgorithm

org.simplicategrid.model.cere.algoritl

& DynamicSchedulingAlgarithm()
@ allocate(Set<Resource> List<Warkflow>) List<Allocation=

o

“<lava Clagsr>
(& SimpleSchedulingAlgorithm

arg.simplicategrid.madel.cere.algeritl

OcSimpleScheduIingAlgUrilhm()
@ allocate(Set<Resource> List<Waorkflow:=) List<Allocation=

=<Java ICIass))
(B HeftSchedulingAlgorithm

org.zimplicategrid.modeal.core.algoritl

OcHeﬂScheduIingAlgorithm()

@ allocate(3et<Resource~ List<Workflow>=):List<Allocation>

<<lava Class>>
(3 ResourceComparator

org.simplicategrid.madal.cora algeritl

<<lava Clags>>
(®ResourceComparator

org.simplicategrid. model.ere.algoritl

=<Java Classr»
(GRankComparator

org.zimplicategrid.model.cora.algaoritl

GCResourceComparator()

@ compare(Resource Resourcelint & ResourceComparator])

@ compare(Resource,Resource).int

EcRankCnmparatnr()
@ compare(Pair<Executable, Long> Pair<Executable, Long=)int

Fig. 5 the class diagram of the metascheduler module

The experiments were carried out for randomly generated
workflow tasks of varying complexity. The example of
randomly generated graph is shown in Fig. 6.

Obviously, the real workflows of specific domains have
fewer nodes and links. However, the use of more complex
workflows allows identifying bottlenecks in the studied
algorithms.

The grid-environment experimental model was presented by
four compute nodes with the following characteristics: CE1 =

{10 mips, 100, 0, {100, 50}}; CE2 = {25 mips, 100, 0, {100,
201}; CE3 = {35 mips, 100, 0, {80, 40}}; CE4 = {47 mips,
100, 0, {100, 30} }.

The effectiveness of a scheduling algorithm in the

experiments was determined by: 1) the objective function
value; 2) the computational complexity of the algorithm.

In order to simplify the objective function was defined by
task execution time, excluding the economic costs.

Fig. 6 generated workflow structure example

Table 5 shows the results of the experiments for the tasks of

ISBN: 978-1-61804-236-1

different complexity and the following scheduling algorithms:

84

Advances in Information Science and Applications - Volume |

1 - heuristic algorithm HEFT, 2 - scheduling algorithm based
on dynamic programming method, 3 - random selection of the
Table 5. Experimental results

resource to perform the task of computing unit, ready to run,
excluding the cost of accommodation.

Number of Nurpber of Number of Scheduling time, Runtime, Algorithm (Iﬂl;[;zlg fo rt;(;[g‘;s

nodes links levels ms s / number of links)
10 13 5 518,4 1 0,769231
25 34 7 9 6859,91 1 0,735294
50 72 9 30 7241,28 1 0,694444
10 13 5 5 408 2 0,769231
25 34 7 12 5833,44 2 0,735294
50 72 9 43 6167,76 2 0,694444
10 13 5 1 576 3 0,769231
25 34 7 5 7873,92 3 0,735294
50 72 9 20 8203,2 3 0,694444

Fig. 7-8 shows the results of the algorithms performance
criteria evaluation depending on the complexity of the
workflow structure.
Proposed algorithm showed a higher efficiency for the
workflow runtime criterion. Scheduling time of the proposed
method is higher than for other algorithms, but it is
incomparably less the workflow runtime in the grid-
environment that justifies the appropriateness of the proposed

solution.
9000

8000

7000

6000 =

5000 =il

4000 —+-2
3000
2000
1000

0

0.69 07 0.75 0.76 0.77 0.78
Fig. 7 execution time depending to the complexity of the

workflow structure
50

071 0.72 07 074

45
40
35

30
— 1

25 ——2

0.69 0.7 0.7 0.72 0.73 0.74 0.7 0.76 0.77 0.78
Fig. 8 scheduling time depending to the complexity of the
workflow structure

VII. CONCLUSION

The paper discusses the features of using grid environment
to perform various types of computational tasks of high

ISBN: 978-1-61804-236-1

85

dimension. The metascheduler structure of the centralized
workflow management system and two stage scheduling
strategy that takes into account QoS requirements, the
dynamicity execution and structural features of the task were
proposed. The dynamic programming method application to
the workflow scheduling problem was shown in the paper.
Experimental results proved the effectiveness of the proposed
workflow scheduling method. The effectiveness evaluation of
the proposed queue processing and rescheduling strategy
where not presented in the paper and require additional
research.

REFERENCES

Forti A. DAG Scheduling for grid computing systems / A. Forti // Ph.D.
Thesis, University of Udine, Department of Mathematics and Computer
Science. — Italy, 2005 — 2006. — P. 43-46, 52-55.

Kazymyr V. Grid workflow design and management system / V.
Kazymyr, O. Prila, V. Rudyi // International Journal “Information
Technologies & Knowledge”. —2013. — Vol. 7, N 3. — P. 241 — 255.
Gerasoulis A. A comparison of clustering heuristics for scheduling
directed acyclic graphs on multiprocessors / A. Gerasoulis, T. Yang //
Journal of Parallel and Distributed Computing. — 1992. — N 16. — P. 276
—291.

Tompkins M.F. Optimization techniques for task allocation and
scheduling in distributed multi-agent operations / M.F Tompkins //
Diss. Massachusetts Institute of Technology. — 2003. — P. 20-23.

Job Submission Description Language (JSDL) Specification, Version
1.0, GFD-R.136. — 2008. — P. 5-10.

Extended Resource Specification Language, Reference Manual for
ARC versions 0.8 and above, Nordugrid-Manual-4. —2013. — P. 13-28.
Job description language attributes specification for the gLite Workload
Management System, WMS-JDL.doc. —2011. — P.7-10, 38-40.

Yu J. Workflow Scheduling Algorithms for Grid Computing,
Metaheuristics for Scheduling in Distributed Computing Environments /
Yu J., Buyya R., Ramamohanarao K.; Xhafa F., Abraham A. (Ed.). —
Berlin, Germany: Springer, 2008. — P. 111-149.

Fangpeng D. Scheduling Algorithms for Grid Computing: State of the
Art and Open Problems / D. Fangpeng, AklL.G. Selim // School of
Computing, Queen’s University Kingston, Ontario, Technical Report. —
2006. - N 504. - P. 7-32.

Liou J. CASS: an efficient task management system for distributed
memory architectures / J. Liou, M.A. Palis // International Symposium
on Parallel Architectures, Algorithms and Networks (ISPAN '97). -
Taipei, Taiwan, 1997. — P 289 — 295.

(2]

(3]

(4]

(6]
(7]
(8]

[10]

Advances in Information Science and Applications - Volume |

[11] Bajaj R. Improving Scheduling of Tasks in a Heterogeneous
Environment / R. Bajaj, D.P. Agrawal // IEEE Transactions on Parallel
and Distributed Systems. — 2004. — Vol. 15, N 2. —P. 107 — 118.

[12] Introduction to algorithms, third ed. / Thomas H.C., Leiserson C.E.,
Ronald L.R. [et al.]. — [3 ed.]. — Cambridge, Massachusetts London,
England: The MIT Press, 2009. — P. 357 — 414.

[13] H. Zhao, R. Sakellariou: Scheduling Multiple DAGs onto
Heterogeneous Systems. Proceedings of the 20th international
conference on Parallel and distributed processing, p.159-159, April 25-
29, 2006.

[14] L. Zhu, Z. Sun, W. Guo, Y. Jin, W. Sun, W. Hu: Dynamic Multi DAG

Scheduling Algorithm for Optical Grid Environment. Network

Architectures, Management, and Applications, V 6784(1), 2007.

Bittencourt, L.F., Madeira, E.R.M.: Towards the Scheduling of Multiple

Workflows on Computational Grids. Journal of Grid Computing, 8, pp.

419-441, 2010.

[16] Melnyk A. Multiple DAGs Scheduling with Deadline Driven
Coordinator in Grid / A. Melnyk // Second International Conference
“Cluster Computing”. — Lviv, Ukraine, 2013. — June 3-5. — P. 127 —
130.

[17] Buyya R. GridSim: A Toolkit for the Modeling and Simulation of
Distributed Resource Management and Scheduling for Grid Computing
/ R. Buyya, M. Manzur // The Journal of Concurrency and Computation:
Practice and Experience (CCPE). — 2002. — Vol. 14, Is. 13-15. — P.
1179 - 1219.

[15

[t}

ISBN: 978-1-61804-236-1 86

