Відповідно, за співвідношенням (4) можна визначити швидкість різання, яка допускається двигуном головного приводу верстату за формулою:

$$\mathbf{P}_{\underline{a}}^{-} = \frac{N_{\partial} \cdot 10^{3} \cdot n \cdot K_{n}}{P_{z}}, \text{ M/c}$$
 (6)

де N_z – потужність двигуна головного приводу верстату, КВт;

n – коефіцієнт корисної дії кінематичної ланки головного руху різання;

 K_n – коефіцієнт, допустимого короткочасного перевантаження двигуна;

 P_z – головна складова сили різання, Н.

Характеристики різального інструменту повинні забезпечувати швидкість різання, яка буде максимально близькою до визначеної швидкості різання $k = \sqrt[4]{\frac{1}{a}} \xrightarrow{l} 1,0$.

Волох В.И., аспирант Буря А.И. канд. техн. наук, профессор

Днепровский государственный технический университет, г. Каменское, aliha2004@ukr.net

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СТРУКТУРУ И МАГНИТНЫЕ СВОЙСТВА СТАЛЕЙ

При термической обработке (нагреве сталей) происходит внутреннее изменение микроструктуры сталей, в результате изделие приобретает определённые магнитные и физико-механические свойства.

Коэрцитивная сила отражает интегральные свойства ферромагнетика и характеризует общую устойчивость к внешним температурным воздействиям. Учитывая это, цель работы заключалась в оценке влияния структуры сталей 3пс; St37; 09Г2С на их магнитное состояние Нс, после нагрева образцов.

Для исследований из горячекатаного уголка были вырезаны образцы размером 90 x 40 x 5 мм из сталей, химический состав которых представлен в таблице 1.

Таблица 1 – Химический состав исследуемых сталей

Марка стали	С	Mn	Si	S	P	Cr	Ni	Cu	Al
09Г2С	0,08	1,58	0,63	0,018	0,028	0,04	0,03	0,04	0,018
St37	0,17	0,53	0,19	0,016	0,030	0,05	0,03	0,06	0,023
3пс	0,15	0,47	0,21	0,018	0,010	0,04	0,02	0,01	0,034

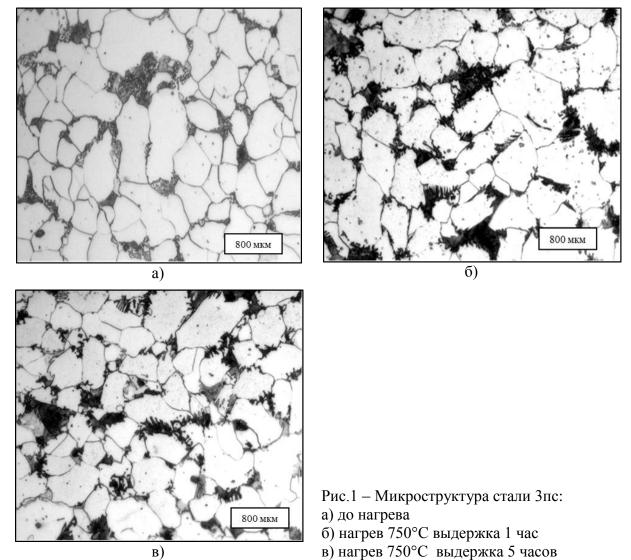

Для изменения структуры образцы сталей нагревали до 750°C, выдерживали 1 и 5 часов. Для фиксации полученной структуры образцы после окончания нагрева охлаждали в воде. Измерения коэрцитивной силы Нс и твердости НВ каждого из этих образцов, представлены в таблице 2

Таблица 2 – Свойства образцов после нагрева, при разной выдержке

№	До нагрева		Нагрев при 750°C,					
п/п	до	наі рсва	выд	ержка 1 час	выдержка 5 часов			
	Нс	HB	Нс	HB	Нс	HB		
Сталь3пс	3,5	125	4,71	166,85	4,0	140,3		
St37	3,42	100,71	5,01	143,5	4,57	137,4		
09Г2С	3,45	121,37	6,86	166	6,61	136,33		

Анализ изменения свойств сталей после термообработки позволяет заключить, что наилучшей прочностью обладает сталь 3пс выдержанная при температуре 750°С в течении 1 часа. Обращает на себя внимание тот факт, что при варьировании технологических параметров термообработки, прочность и коэрцитивная сила образцов изменяются симбатно.

Что касается влияния термообработки на структуру сталей, то на примере стали 3пс (рис. 1), исходная микроструктура исследуемого образца, представляющая собой ферритоперлитную смесь с соотношением феррит/перлит ~ 80/20% при температуре 750°C изменяет соотношение феррит - перлит до ~ 75/15% соответственно т.е. увеличивается с 4 до 5. Такое соотношение наблюдается как при выдержке 1 так и 5 часов. Однако в последнем случае коэрцитивная сила несколько снижается за счет сфероидизации перлита. В этом случае от границ зерен феррита начинают образовываются новые перлитные колонии с большим прорастанием в зерна феррита.

Таким образом термообработка низколегированных и низкоуглеродистых сталей в двухфазной области, при надкритическом температурном воздействии 750°С приводит к снижению твердости, прочностных и магнитных свойств сталей. Такая зависимость позволяет контролировать структуру металла в ответственных объектах металлургии: грузоподъемные краны и другие объекты транспортирующий жидкий металл.