TEXHIYHI HAYKU TA TEXHOJIOT T Ne 4(30), 2022
TECHNICAL SCIENCES AND TECHNOLOGIES

DOI: 10.25140/2411-5363-2022-4(30)-113-120
UDC 004.056.53

Yevhenii Berloh?, Andrii Rohovenko?, Hanna Dyvnych?

'PhD student of the Department of Information and Computer Systems
Chernihiv Polytechnic National University (Chernihiv, Ukraine)
E-mail: evgeniy.berlog@gmail.com
2PhD in Technical Sciences, associate professor of the Department of Information and Computer Systems
Chernihiv Polytechnic National University (Chernihiv, Ukraine)
E-mail: arogovenko@gmail.com. ORCID: https://orcid.org/0000-0003-4594-5692. ResearcherID: G-3926-2014

3PhD in Public Administration, associate professor of the Department of Foreign Philology
Chernihiv Polytechnic National University (Chernihiv, Ukraine)
E-mail: anyahaidai@gmail.com. ORCID: https://orcid.org/0000-0003-4240-5391. ResearcherID: R-1613-2016

RESEARCH OF METHODS OF AUTOMATED SEARCH
OF “SQL INJECTION” TYPE VULNERABILITIES IN WEB APPLICATIONS

The article presents the results of a scientific and methodological study of the methods of automated search for SQL
vulnerabilities in web applications. An example of an attack using a typical SQL injection is provided. The classification of
web application security assessment methods based on penetration testing is given. The results of practical studies of the
operation of the most widely used web scanners for automated vulnerability testing of web applications are given. Based on
the results, a comparison of the effectiveness of penetration testing methods has been made. The possible directions of further
research into the methods of automated search for SOL vulnerabilities in web applications are substantiated, taking into ac-
count the results obtained, in particular the values of the Youden Index.

Key words: SOL,; SQL injection; OWASP,; SPA; WVS; Black Box.

Table: 1. Fig.: 3. References: 16.

Urgency of the research. Modern society is more and more relying on web applications,
transferring its life to a digital level, which is raising the level of security requirements. Due to
the complexity of modern web applications, finding vulnerabilities is a very difficult task, the
solution of which does not always give positive results. Both for the research community and for
the data security industry, it is important to develop research methods for finding vulnerabilities
in web applications, taking into account the degree of impact of web technologies on the life of
our society. According to Internet Live Stats as of February 2019 [3], hundreds of millions of
websites are attacked every day, causing significant harm to a large number of people.

According to the leading web security organization Open Web Application Security Project
(OWASP), one of the most common security risks to web applications is code injection [1],
such as cross-site scripting (XSS) and structured query language injection (SQL) [2].

Target setting. In the case of site testing for vulnerabilities, either automated tools or man-
ual tests are used. Manual testing has a number of disadvantages, of which the most significant
should be highlighted:

- Time-consuming. A person significantly loses to computer systems in terms of speed.

- High probability of low-quality testing. The quality of the tests depends on the skills of
the specialist who develops them. There is a risk that some of the vulnerabilities will be missed
due to the human factor.

Thus, taking into account the volume and variety of modern web applications, the use of
automated testing is extremely relevant. However, at the moment, there is no clear information
to what extent existing methods and automated web application testing tools effectively detect
code injection-based vulnerabilities. To determine the effectiveness, it is necessary to conduct
a series of tests using existing automated testing tools.

Actual scientific researches and issues analysis. Many works have been devoted to the
issue of the effectiveness of automated tools designed to find vulnerabilities in web applications
built on the basis of various methods.[1] Most of them are characterized by low efficiency. At
the same time, there are many publications on the possible improvements of automated tools
designed to find vulnerabilities in web applications [6; 9]. The existing test sets for most types

© €sreniii bepnor, Anapiii Porosenko, ['anna /lusauu, 2022

113

mailto:evgeniy.berlog@gmail.com
file:///C:/Users/User/Downloads/arogovenko@gmail.com
https://orcid.org/0000-0003-4594-5692
mailto:anyahaidai@gmail.com
https://orcid.org/0000-0003-4240-5391

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 4(30), 2022
TECHNICAL SCIENCES AND TECHNOLOGIES

of vulnerabilities in web applications are described in great detail in the literature [12]. There
is also some information on testing certain types of vulnerabilities [13]. According to the results
of the analysis of recent studies, it can be concluded that there is enough information available
to the general public about commercial tools for testing the vulnerability of web applications.

Uninvestigated parts of general matters defining. An unsolved task is to determine the
effectiveness of open-source web vulnerability testing tools based on penetration testing meth-
ods. In this work, special emphasis is placed on the fact that in the case of low efficiency of
open-source testing tools, it is possible to analyse the reasons that create this deficiency and
propose a solution to the problem. It is necessary to conduct a study of existing open-source
web scanners and perform an analysis of their performance according to the Youden Index.

The research objective. The purpose of this work is a practical study of tools for searching
vulnerabilities in web applications, as well as an analysis of their work efficiency according to
the Youden index and the determination of directions for the development of automated tools
in order to further simplify the process of protecting web applications from attacks based on
code injections.

The statement of basic materials. SQL injection is classified as a code injection attack
where an attacker enters malicious SQL queries into an input field. An example of a typical
SQL injection can be seen in Figure 1. All types of SQL injection are very similar to this exam-
ple. By making an SQL injection, an attacker can either change the database or show the con-
tents of those data that would normally be inaccessible [10].

Malicicus code is
sent fo the SQL

The attacker sends server without
malicious code . verfication Users
" Login
The attacker Name Mail Password
Password -
|| The information
The attacker receives about the users is
information about all returned

system users

Fig. 1. An example of a typical SQL injection

Security assessment methods based on penetration testing (pentests) can be classified into
several categories depending on the level of knowledge about the system to be tested. This
knowledge may include the programming language, the type of database used in the applica-
tion, the technologies used. In general, the tests are commonly divided into three categories:

- Black Box;

- White Box;

- Grey Box.

Black Box is a type of pentests when the developer knows only the address of the applica-
tion that needs to be tested. In the case of web applications, this is the IP address (or domain
name) and the port. In most cases, Black Box testing is a combination of manual and automated
testing. The advantage of this type is that the tester is in the same conditions as the external
hacker and therefore can find the same vulnerabilities. The disadvantage is that the tester does
not have access to internal services.

White Box testing is the opposite of Black Box. In this case, the tester has full access to
the code, documentation, architecture, user credentials, etc. The advantage of this type of testing
is that the tester can find some vulnerabilities based on code analysis. Also, in this case, you
can test both external and internal services. This type of testing is more resource-consuming
compared to Black Box testing.

Grey Box testing is a mix of White Box and Black Box. In this case, the tester may have a
certain piece of information that may be useful for testing [4].

114

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 4(30), 2022
TECHNICAL SCIENCES AND TECHNOLOGIES

One of the tools used for automated Black Box testing is the Web Vulnerability Scanner
(WVS). WVS scans a web application for specific vulnerabilities. Usually, it consists of three
modules: web scanner, fuzzer and analyzer [6].

The first to come into play is the web scanner, which is used to analyse the web application,
to determine what data the web application can accept as input and to build the structure of the
web application pages. When the first stage is completed, the fuzzer generates data that can be
used to attack the web application and actually executes the attacks. Finally, the analyser eval-
uates the result to determine which attacks were successful and which were not. Based on these
results, the analyser generates a report with a list of vulnerabilities that were found with a de-
tailed description of how exactly this particular vulnerability was found.

The web scanner automatically searches the web application for URLs derived from the
original URL. It is traditionally used in search engines such as Google and Bing. The scanner's
workflow begins by loading a web page with an initial URL and searching the HTML DOM
for related URLs. One of the resources that the scanner pays attention to is the robots.txt file,
which is used to inform the scanner of which resources it should not access. Another type of
file that the scanner analyses during this process is the XML sitemap. This file is a list of im-
portant web pages and is essential for building the website structure. The algorithm of the scan-
ner can be seen in Fig. 2.

? Start

Has the
— process Finish
finished?

Mo

S

Is the URL
queus

empty?
S

Emj

Taka the next URL

o

Download the
Web page
L

Scatter the web page

Add the found
URLs to the
quele

Fig. 2. Algorithm of the web scanner

Fuzzing is an automated testing technique that randomizes the input for programs and fo-
cuses on edge cases with the use of invalid data.[7] Fuzzing was first described by Miller [8] in
a program called The Fuzz. This program generated random characters as input for testing
UNIX utilities.

There are two traditional types of fuzzing techniques, which are listed below:

- Mutation-based fuzzing is based on collecting correct data, and randomly or heuristi-
cally changing that data. The data is then used to attack the system under test (SUT) and observe
the behaviour of the web application. An example of mutation-based fuzzing with heuristics
can be a change in the length of an input string.

- Another traditional type of fuzzing is generation-based fuzzing, which uses a specifica-
tion describing the composition of the input data, such as a file format, to automatically generate
semi-valid input data. This is often combined with various types of fuzzing heuristics, such as

115

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 4(30), 2022
TECHNICAL SCIENCES AND TECHNOLOGIES

very long empty strings. Mutation-based fuzzing is generally easier to get started with because
it doesn't take much to know about SUTs. However, mutation-based fuzzing generally results
in lower code coverage compared to generation-based fuzzing [14].

The analyser’s job is to decide if a vulnerability exists in a web application. This is resolved
based on the response received from a fuzzer attack on the web application [9]. The analyser
tries to find common patterns in the error messages that indicate that this part of the web appli-
cation has some kind of vulnerability.

Since the purpose of this article is to analyse the methods and efficiency of performance of
scanners, several scanners should be selected as the subject of testing and analysis. Based on
the information from the sources, a large number of available open-source scanners can be
identified. Therefore, the following criteria were used as a basis for the selection of experi-
mental specimens:

- The ability to work with SPA (Single Page Application) web applications;

- Code openness.

- Project support by the developer community.

- The ability to search for SQL injections.

As a result of the analysis, three scanners were selected.

OWASP Zap (Zed Attack Proxy) is one of the most popular WVS with a huge community
behind it and so it was chosen as the first focus scanner [15]. It has shown good results according
to some previous articles and consists of many different functionalities, making it an interesting
tool for this project. Zap is created and maintained by the OWASP Foundation [1], runs on Win-
dows, Linux, and Mac OS, and is written in Java. ZAP uses a GUI from which the user can
perform scans, but it also acts as a proxy server so that the user can observe and manipulate all
the traffic that passes through it. OWASP Zap can work with both traditional and AJAX scanners.

Arachni is a high-performance, free and open source ruby-based scanner designed to help
administrators and testers assess the security of web applications. Arachni supports multiple
platforms, including Windows, Linux, and Mac OS X, and can be instantly used on any system.
Arachni includes both a command line interface (CLI) and a web user interface for multi-user
management [16].

Wapiti is the third and final scanner selected for testing. Wapiti differs from the other two
scanners in several ways:

It is written in Python and only works on Linux.

It has no GUI and does not act as a proxy server.

This scanner is different from the other two and also has active community support, making
it an interesting choice for analysis.

The OWASP Benchmark test was launched in 2015 to evaluate the accuracy, coverage and
speed of web application vulnerability scanners. Being an open-source program, organizations
and researchers can use this framework to evaluate web vulnerability scanners using thousands
of test cases provided by the OWASP Benchmark for eleven different vulnerability categories.
These categories include cross-site scripting (XSS), insecure cookie, LDAP injection, structured
query language (SQL) injection, and many others. OWASP Benchmark is implemented in Java
and can be used to evaluate different types of scanners. Although OWASP Benchmark is a free
and open-source program, it remains one of the most up-to-date because it is actively supported
by the open-source community. Thus, the OWASP Benchmark can be considered an effective
option for measuring the effectiveness of vulnerability scanners. It evaluates a tested scanner
based on true positive rate, false positive rate, true negative rate, and false negative rate.

The score obtained by the OWASP Benchmark is the Youden index, which is a standard
method that summarizes the accuracy of a set of tests [12]. OWASP Benchmark calculates an
individual score for each category of test cases, called the Benchmark Accuracy Score, ranging
from 0 to 100. The following example provides an overview of how OWASP Benchmark cal-
culates the Scanner Accuracy Score.

116

TEXHIYHI HAYKU TA TEXHOJIOT T

Ne 4(30), 2022

TECHNICAL SCIENCES AND TECHNOLOGIES

Let's say the scanner showed a true positive rate (TPR) of 88 % and a false positive rate
(FPR) of 15 %; This means that its sensitivity = TPR (0.88) and its specificity = 1-FPR (0.85).
So, the Youden Index is (0.88+0.85) - 1 = 0.73 and the OWASP score is 73 because it normal-
izes the results to a range of 0 to 100.

Each of the scanners was run on the OWASP Benchmark tests and the scan results are
shown in Table 1 below. Metrics including TP, FN, TN, FP, TPR and FNR and the Youden
index have been calculated for each web vulnerability scanner.

Table 1 — The results of the study of scanners on the OWASP Benchmark

WVS TP EN ™ Ep Total of TP per- FP per- Youden
tests centage centage Index
OWASP ZAP 160 112 215 17 504 58,82% 7,33% 51,50%
v2.12.0
Arachni v1.6.1.3 136 136 232 0 504 50,00% 0,00% 50,00%
Wapiti v3.1.4 153 119 232 0 504 56,25% 0,00% 56,25%

Fig. 3 highlights the performance evaluation of each of the selected scanners based on the
OWASP Benchmark tests for SQL Injection vulnerability.

-

Betterthan guessing | | = ------ Random Guess Non-Commercial
| m A: Arachniv1.6.1.3
100% i — m B: OWASP ZAP v2.12.0
; /| mC:Wapitiv3.1.4
| ’/,
90% t i
: /
80% —
70%
o
S 60% .
n By,
S [N
250% [m Ik
g " Rl i
o SCUPN < |
) N fng o3
2 40% —
= e Sy ‘
) e :)' |
30% 1IN \’\'/
20%
10% ‘
0% |42
Worse than guessing

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

False Positive Rate

110% 120% 130% 140% 150%

Fig. 3. Performance evaluation of the scanners based on the OWASP Benchmark

As a result, Wapiti has shown the best results with a Youden index of 56.25, ZAP is in
second place with an indicator of 51.50 and Arachni is in third place with a result of 50.00.

Conclusions.

- An example of an attack on a web application is given and the main elements and stages
of a typical SQL injection are highlighted;

- The classification of web application security assessment methods based on penetration
testing is provided.

117

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 4(30), 2022
TECHNICAL SCIENCES AND TECHNOLOGIES

- The results of practical studies of the operation of the most widely used open-source web
scanners for automated vulnerability testing of web applications are presented.

The calculated Youden index allows us to conclude that the Wapiti scanner has the highest
efficiency, that is, it has detected the largest number of vulnerabilities. But even this scanner
has a Youden coefficient of less than 60%, so the task of improving the efficiency of searching
for SQL injection vulnerabilities is highly relevant for further research. In addition, during the
study, it was determined that the process of scanning for vulnerabilities of the "SQL injection"
type is more complicated for applications of the SPA (Single Page Application) type, which
also requires a solution as a special case of the problem of increasing the effectiveness of the
search for vulnerabilities of web applications.

CnucoOK BUKOPUCTAHMX JIKepeJt

OWASP, Top 10 2021 [Electronic resource]. — 2021. — Available: https://owasp.org/www-chapter-
minneapolis-st-paul/download/20211216 OWASP-MSP_OWASP Top Ten 2021.pdf?raw=true.

Halfond W. G. J. A classification of SQL injection attacks and countermeasures / W. G. J. Halfond,
J. Viegas, A. Orso // Proceedings of the IEEE international symposium on secure software engineering.
—2006. — Vol. 1. — Pp. 13-15.

W3C, Internet live stats [Electronic resource]. — 2019. — Available: http://www.internetlivestats.com.

Mohd. Ehmer Khan. A Comparative Study of White Box, Black Box, and Grey Box Testing
Techniques / Mohd Ehmer Khan, Fareema Hkaan // International Journal of Advanced Computer Science
and Applications. — 2012. — Vol. 3, No 6. — Pp. 12-14. — Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.261.1758&rep=re p1&type=pdf.

Benjamin Eriksson. Black Widow: Black-box Data-driven Web Scanning / Benjamin Eriksson,
Giancarlo Pellegrino, Andrei Sabelfeld / 2021 IEEE Symposium on Security and Privacy (SP). —2021.
—Pp. 1125-1142. - DOI: 10.1109/SP40001.2021.00022.

Siham el Idrissi. Performance evaluation of web application security scanners for prevention and
protection against vulnerabilities / Siham el Idrissi, Naoual Berbiche, Fatima Guerouate, Sbihi Mohamed
// International Journal of Applied Engineering Research. — Jan. 2017. — Vol. 12 — Pp. 11068—11076.

Oehlert P. Violating assumptions with fuzzing” / Peter Oehlert // IEEE Security Privacy. — 2005. —
Vol. 3.2. — Pp. 58-62. — DOI: 10.1109/MSP.2005.55.

Barton P. Miller. An Empirical Study of the Reliability of UNIX Utilities / Barton P. Miller, Louis
Fredriksen, Bryan So // Commun. ACM. — Dec. 1990. — Vol. 33.12. — Pp. 32-44. — DOL:
10.1145/96267.96279.

Adam Doupé. Why Johnny can’t pentest: An analysis of black-box web vulnerability scanners /
Adam Doupé, Marco Cova, and Giovanni Vigna // International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. — Springer, 2010. — Pp. 111-131.

William G. Halfond. A classification of SQL-injection attacks and countermeasures / William G.
Halfond, Jeremy Viegas, and Alessandro Orso // Proceedings of the IEEE international symposium on
secure software engineering. IEEE. — 2006. — Vol. 1. — Pp. 13-15.

OWASP. (2022). OWASP Benchmark [Electronic resource]. — Available: https://www.owasp.org/
index.php/Benchmark.

Vulnerability Scanning Tools, 2022 [Electronic resource]. — Available: https://owasp.org/www-
community/Vulnerability Scanning_Tools.

Matti E. Evaluation of open source web vulnerability scanners and their techniques used to find
SQL injection and cross-site scripting vulnerabilities : Student thesis. — LinkOpings universitet,
Institutionen for datavetenskap, 2021.

OWASP. (2016). Fuzzing [Electronic resource]. — Available: https://www.owasp.org/index.php/
Fuzzing.

OWASP ZAP [Electronic resource]. — URL: https://github.com/zaproxy.

Laskos T. Arachni Application Security Scanner Framework [Electronic resource] / T. Laskos. —
2017. — Available: http://www.arachni-scanner.com.

References
1. OWASP Top 10 2021, 2021. https://owasp.org/www-chapter-minneapolis-st-paul/download/
20211216 OWASP-MSP_OWASP Top Ten 2021.pdf?raw=true.

118

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 4(30), 2022
TECHNICAL SCIENCES AND TECHNOLOGIES

2. Halfond, W.G.J., Viegas, J., Orso, A. (2006). A classification of SQL injection attacks and
countermeasures, /, 13-15.

3. W3C, Internet live stats. (2019). http://www.internetlivestats.com.

4. Mohd, Ehmer Khan, Fareema, Hkaan. (2012). A Comparative Study of White Box, Black Box,
and Grey Box Testing Techniques. [Infernational Journal of Advanced Computer Science and
Applications, 3(6), 12-14. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.261.1758&rep=
repl&type=pdf.

5. Benjamin, Eriksson, Giancarlo, Pellegrino, & Andrei Sabelfeld. (2021). Black Widow: Black-
box Data-driven Web Scanning”. 2021 IEEE Symposium on Security and Privacy (SP) (pp. 1125-1142).
doi: 10.1109/SP40001.2021.00022.

6. Siham, el Idrissi, Naoual, Berbiche, Fatima, Guerouate, & Sbihi, Mohamed. (Jan. 2017).
Performance evaluation of web application security scanners for prevention and protection against
vulnerabilities. International Journal of Applied Engineering Research, 12, 11068-11076.

7. Oechlert, P. (2005). Violating assumptions with fuzzing. IEEE Security Privacy, 3.2, 58—62. doi:
10.1109/MSP.2005.55.

8. Barton, P. Miller, Louis, Fredriksen, & Bryan, So. (Dec. 1990). An Empirical Study of the
Reliability of UNIX Utilities. Commun. ACM, 33.12, 32-44. doi: 10.1145/96267.96279.

9. Adam, Doupé, Marco, Cova, & Giovanni, Vigna. (2010). Why Johnny can’t pentest: An analysis
of black-box web vulnerability scanners. International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (pp. 111-131). Springer.

10.William, G. Halfond, Jeremy, Viegas, & Alessandro, Orso. (2006). A classification of SQL-
injection attacks and countermeasures. Proceedings of the IEEE international symposium on secure
software engineering. IEEE, 1, 13—15.

11.O0WASP. (2022). OWASP Benchmark. https://www.owasp.org/index.php/Benchmark.

12.Vulnerability Scanning Tools (2022). https://owasp.org/www-community/Vulnerability
Scanning Tools.

13.Erik, Matti. (2021). Evaluation of open source web vulnerability scanners and their techniques
used to find SOL injection and cross-site scripting. Vulnerabilities.

14.O0WASP. (2016). Fuzzing. https://www.owasp.org/index.php/Fuzzing.

15.0WASP ZAP. https://github.com/zaproxy.

16.Laskos, T. (2017). Arachni Application Security Scanner Framework. http://www.arachni-
scanner.com.

Otpumano 15.11.2022

VIIK 004.056.53

Cezeniit Bepnoz', Anopiii Pozosenxo?, F'anna /Juenuy®

lacripanT kadenpy iHOPMAIHHMX Ta KOMIT FOTEPHUX CHCTEM
Hamionansauii yHiBepcuteT «UepHiriBebka mnomitexsikay (UepHiri, YkpaiHa)

E-mail: evgeniy.berlog@gmail.com

KaHMIaT TEXHIYHUX HAYK, TOUEHT Kadenpy iHpopMaliiHuX Ta KOMITFOTEPHUX CHCTEM
Hamionansauii yHiBepcuteT «UepHiriBebka mnomitexsikay (UepHiri, YkpaiHa)
E-mail: arogovenko@gmail.com. ORCID: https://orcid.org/0000-0003-4594-5692. ResearcherID: G-3926-2014

3KaHAMIAT HAayK 3 JIEPKABHOTO YIPaBJiHHA, JOLUEHT Kadeapu iHo3eMHoi (inomnorii
HamuionansHuii yHiBepcuteT «UepHiriBebka nositextikay (UepHiris, YkpaiHa)
E-mail: anyahaidai@gmail.com. ORCID: https://orcid.org/0000-0003-4240-5391. ResearcherID: R-1613-2016

JOCHIIKEHHSA METOJAIB ABTOMATHU30BAHOI'O ITOIYKY
BPA3JIMBOCTEM THITY «SQL INJECTION» ¥ BEBJIOJJATKAX

Y emammi npeocmasneno pezynomamu HayKo80-memooutHo20 O00CHIOHCEHH MemoOi8 asmoMamu308ano020 NOUYKy
SOL epaznusocmetl y 6e6000amrax.

Haseoeno npuxiad amaku 3 3acmocygannsim munogoi SQL in’exyii. Yci SQL in’exyii 6yoyiomocs 3a nodionoto cmpyk-
myporo, moomo pesyiomamom SQL in’exyii, modxce Oymu necankyionogana 3mina emicmy 6asu 0anux, abo ompumans 0oc-
myny 0o ingopmayii, AKa 3a 36ULATHUX YMO8 HEOOCMYNHA.

Haseoeno xknacugpixayiro memodie oyinku 6esnexu Web-0odamkie Ha 0CHO8I mecmyeants Ha NPOHUKHEHHS. 30Kkpema,
npu Kracu@ixayii 6paxo8yomvbcs Mo68a NPOSPAMYSAHHS, Mun 6a3u OAHUX AKA GUKOPUCTIOBYEMBCS 8 000AMKY Md GUKOPUCTHAHI
mexHo0¢2ii. Budineno mpu kamezopii mecmie, ma HageoeHi 6IOMIHHOCIE MIdC HUMU.

119

mailto:evgeniy.berlog@gmail.com
file:///C:/Users/User/Downloads/arogovenko@gmail.com
https://orcid.org/0000-0003-4594-5692
mailto:anyahaidai@gmail.com
https://orcid.org/0000-0003-4240-5391

TEXHIYHI HAYKU TA TEXHOJIOT T Ne 4(30), 2022
TECHNICAL SCIENCES AND TECHNOLOGIES

Poszenanymo nioxoou 0o mecmyeanns na nponuxnenns maxi sk Black Box, White Box ma Grey Box. bepyuu do ysaeu
HeOOXIOHICMb A8MOMAMU3AYIT MECMY8AHHSL MA MAKCUMAIbHOL IMIMayii xakepcvkoi amaxu 3306Hi 6yno obparno nioxio Black
Box nioxio mecmysanms.

Poszensinymo anzopumm pobomu 3aco0ig nowyky spasnusocmeil y Web-dooamrax, 3oxkpema éeo-cxanepa (WVS). Taxooxce
PO32IAHYMO 0COONUBOCTI UKOPUCAHHS MPAOUYITHUX MemOoOi8 3Hax00xcenHs epaszauseocmeti y Web-oodamrkax bepyuu 0o
yeaeu munosy apximexmypy WVS ma 6epyuu 0o ysacu munosy siominnicme y pobomi WVS npu pobomu 3 mpaouyiinumu
seb0odamxamu ma SPA dooamxamu.

Haseoeno peszynomamu npakmuunux 00CaiodceHb pobomu HAlyHCUBAHIUUX 8eOCKaHepis Olisk AMOMAMU308AH020 MeC-
MYBAHHS 8PA3IUBOCHT 666000amKi8, 30Kkpema docnioxceno ckanepu OWASP Zap, Arachni, Wapiti.

Ob6uyucneno indexc KOoena, sxuii das 3moz2y 3pobumu 6UCHOBOK, Wo Haubitbwia epexmusnicms € y ckanepa Wapiti,
mo6mo 6iH 6us6uUE HaUbLILULY KilbKicms epaznusocmeil. Ane Hasimo yei ckanep mae koegiyienm FOoena menw nise 60 %,
omoice 3a0aua nioguwenHs: epexkmuernocmi noutyky epasuueocmeti muny “SQL in’exyis” € dysce akmyanoHuM OJist NOOGb-
wozo docnioxcens. [lo0amxoeo npu 0ocuioxcenHi 610 8USHAUEHO, WO NPoYec CKAHYBAHHS HA Npeomem 8pa3iusocmeri muny
“SOL-in’exyin” € cknaouiwum ons dodamxis muny SPA (Single Page Application), wo maxooc nompebye piuienns 8 akocmi
OKPEeMO20 8UNAOKY 3a0aui NiOGUUeHHs eheKkmusHOCmI NoulyKy épasiueocmeti Web-dooamxis.

Knrouoei cnosa: SQL; SQL-in’exyis;, OWASP,; SPA; WVS, Black Box.

Berloh, Ye., Rohovenko, A., Dyvnych, H. (2022). Research of methods of automated search of “SQL injection” type vulnerabilities in web
applications. Technical sciences and technologies, (4(30)), 113-120.

120

