задається нею, а також тиск газу в робочій камері. Струм розряду визначає повну потужність, що виділяється в розрядному проміжку, а тиск газу – питомі енергетичні характеристики розряду.

2. Збурення, що впливають на процес іонного нагріву, мають різну фізичну природу, інтенсивність, періодичність та тривалість дії, однак, усі вони призводять до порушення заданого теплового стану зони з'єднання деталей і тому їх вплив повинен бути скомпенсований або мінімізований.

Список використаних джерел

1. Котельников Д. И. Сварка давлением в тлеющем разряде / Д. И. Котельников. – М. : Металлургия, 1981. – 116 с.

2. *Львов Н. С.* Автоматика и автоматизация сварочных процессов / Н. С. Львов, Э. А. Гладков. – М. : Машиностроение, 1982. – 302 с.

3. *Болотов Г. П.* Тлеющий разряд как источник нагрева в процессах сварки и пайки / Г. П. Болотов //Автоматическая сварка. – 2001. – № 8. – С. 41-44.

УДК 621.924.1/6

Л.И. Маркашова, д-р техн. наук

Т.А. Алексеенко, мл. науч. сотруд.

С.Л. Жданов, канд. техн. наук

Институт электросварки им. Е.О. Патона Национальной академии наук Украины, г. Киев, Украина

Т.В. Ганеева, ассистент

Черниговский государственный технологический университет, г. Чернигов, Украина

ВЛИЯНИЕ ВНЕШНЕГО СТАТИЧЕСКОГО НАГРУЖЕНИЯ НА ИЗМЕНЕНИЕ ПАРАМЕТРОВ СТРУКТУРЫ МЕТАЛЛА УЧАСТКА ПЕРЕГРЕВА ЗТВ СВАРНЫХ СОЕДИНЕНИЙ ВЫСОКОПРОЧНЫХ СТАЛЕЙ

Проведенные исследования показали, что 3ТВ сварных соединений высокопрочной стали 17Х2М, выполненных сварочной проволокой Св-10ХН2ГСМФТЮ со скоростью охлаждения W_{6/5} = 20°С/с, обладает оптимальным сочетанием свойств прочности и трещиностойкости как после сварки, так и в условиях воздействия внешнего нагружения. Это обеспечивается формированием в участке перегрева максимального количества структур бейнита нижнего, а также мартенсита отпуска.

Ключевые слова: дуговая сварка, микроструктура, высокопрочные стали, статическое нагружение.

Проведені дослідження показали, що 3ТВ зварних з'єднань високоміцної сталі 17Х2М, виконаних зварювальним дротом Св-10ХН2ГСМФТЮ зі швидкістю охолодження $W_{6/5} = 20^{\circ}$ С/с, має оптимальне поєднання властивостей міцності та тріщиностійкості як після зварювання, так і в умовах впливу зовнішнього навантаження. Це забезпечується формуванням у ділянці перегріву максимальної кількості структур бейніту нижнього, а також мартенсита відпуску.

Ключові слова: дугове зварювання, мікроструктура, високоміцні сталі, статичне навантаження.

The research showed that the HAZ of welded joints made of high-strength steel 17X2M welding wire Ce-10XH2 Γ CM Φ THO cooling rate $W_{6/5} = 20^{\circ}$ C/s, has the best combination of strength and fracture toughness properties, as-welded and in the conditions of an external load. This is ensured by the formation of hot spots in the maximum number of structures of the lower bainite and martensite vacation.

Key words: arc welding, microstructure, high-strength steel, static loading.

Постановка проблемы. Сварные соединения из высокопрочных сталей должны обеспечивать высокий уровень прочности и трещиностойкости, что во многом определяется структурно-фазовым составом в зоне термического влияния.

Анализ последних исследований и публикаций. В настоящее время для изготовления ответственных тяжелонагруженных конструкций широко применяются высокопрочные стали с пределом текучести более 590 МПа. Основные проблемы при сварке таких сталей связанны с необходимостью обеспечения требуемого уровня прочностных свойств и высокой сопротивляемости хрупкому разрушению в процессе дальнейшей эксплуатации [1; 2]. Анализ литературных данных показывает, что свойства высокопрочных сталей в значительной степени зависят от структурно-фазового состава металла 3TB [3; 4].

При этом существующие на сегодняшний день методы оценки механических свойств [5-7] не обладают достаточной точностью, так как не учитывают данных о роли структурных факторов, полученных на различных уровнях исследования, включая данные о зеренной, субструктурной и дислокационной структуре.

Цель статьи. Цель данной работы состоит в изучении влияния внешнего статического нагружения растяжением на структурные изменения в металле участка перегрева сварных соединений высокопрочных сталей.

Изложение основного материала. Исследования проводились на сварных соединениях, полученных в результате механизированной сварки пластин стали 17Х2М в защитных газах (78 % Ar + 22 % CO₂) проволокой сплошного сечения диаметром 1,2 мм марки Cв-10ХН2ГСМФТЮ. Сварка выполнялась без предварительного подогрева на режимах: $I_{cB} = 160...180 \text{ A}, U_{A} = 26...28 \text{ B}, V_{cB} = 12...12,5 \text{ м/ч}, Q_{cB} = 9 кДж/см, скорость охлаждение металла 3TB в интервале температур 600...500 °C составляла W_{6/5} = 20 °C/c.$

Статическое нагружение осуществлялось под действием внешней растягивающей нагрузки, величина напряжений от которой составляла 0,75 $\sigma_B = 765$ МПа и 0,85 $\sigma_B =$ 867 МПа, на вырезанных из металла ЗТВ сварных соединений цилиндрических образцов длиной 48 мм и диаметром рабочей части 6 мм. Время выдержки образцов при каждой фиксированной нагрузке было постоянным и составляло 60 минут. С целью локализации нагрузки в контролируемом участке сварных соединений (зоне термического влияния – 3TВ), на образцы наносилась кольцевая проточка шириной 2 мм и глубиной 0,5 мм. Затем образцы нагружались постоянно действующей нагрузкой.

В результате воздействия на металл предварительной нагрузки, величина которой сопоставима с 0,85 _в данного металла, значение его предела прочности повышаются от 1020 МПа (в исходном после сварки состоянии) до 1156 МПа (после предварительного нагружения образцов указанной нагрузкой).

Исследования структуры металла ЗТВ после сварки и предварительного статического нагружения выполнялись с использованием комплекса методов исследования, включающих световую микроскопию и просвечивающую микродифракционную электронную микроскопию.

Металлографическими исследованиями установлено, что в состоянии после сварки структура в участке перегрева ЗТВ состоит из бейнита верхнего (Б_в), бейнита нижнего (Б_н) и мартенсита отпуска (М_{отп}), при соотношении объемной доли фазовых составляющих (VБ_в ~ 30 %; VБ_н ~ 50 %; VM_{отп} ~ 20 %), (рис. 1, *a*). Размер зерна (ширина пакетов) составляет D₃ (Б_в) ~ 40...70 мкм, а D3(Б_н) ~ 35...65 мкм, D₃ (М_{отп}) ~ 10...20 мкм при микротвердости структурных составляющих $HV(Б_в)$ ~2960...3030 МПа, $HV(Б_h)$ ~3210...3250 МПа и $HV(M_{otn})$ ~ 3800...3900 МПа.

Электронно-микроскопические исследования тонкой структуры на просвет, дающие представления о тонкой структуре, изменении плотности и распределении дислокаций в различных структурных составляющих, показали следующее. Размер реек бейнитных составляющих hP (B_B) ~ 0,3...0,55 мкм, h_P(B_H) ~ 0,25...0,45 мкм, в мартенсите отпуска h_P (M_{orn}) ~ 0,5...0,7 мкм (рис. 1, *б-г*, 2, *б*). В зависимости от структурной составляющей изменяется плотность и распределение дислокаций. В рейках бейнита нижнего наблюдается формирование ячейстой субструктуры с равномерным распределением плотности дислокаций по объему $\rho \sim 4...6 \times 1010$ см⁻², в структурах мартенсита отпуска $\rho \sim 8 \times 1010$...×1011 см⁻². Вдоль реек бейнита верхнего наблюдается повышенное значение плотности дислокаций (ρ) до значения $\rho \sim 7 \times 1010...1011$ см⁻².

После предварительного внешнего статического нагружения в участке перегрева (по сравнению с состоянием после сварки) происходит уменьшение размера зерна

на ~ 10...20 % до 30...65 мкм (Б_в), 30...65 мкм (Б_н) и 10...15 (М_{отп}) (рис. 2, *a*). Микротвердость структурных составляющих увеличивается на 7...11 % и составляет 3300 МПа (Б_в), 3600 МПа (Б_н) и 4000...4100 (М_{отп}) при $\sigma_{\rm H}$ = 0,85 $\sigma_{\rm B}$.

Рис. 2. Изменение структурных параметров в участке перегрева после сварки (σ0), и после применения внешнего нагружения (0,75 σB; 0,85 σB): а – размер зерна; б – размер реек, субструктуры и плотность дислокаций (б)

a

б

Для того, чтобы определить, какие изменения структурных параметров произошли в металле ЗТВ высокопрочных сталей после предварительного статического нагружения, были выполнены исследования тонкой структуры на просвет. Это позволило установить этапы эволюции структуры в участке перегрева образцов в процессе действия статической нагрузки. Показано, что с увеличением статического нагружения (от 0,75 ов

до 0,85 $\sigma_{\rm B}$) интегральное значение внутризеренной плотности дислокаций увеличивается от $\rho \sim 6...7 \times 1010$ до 8...9×1010 см⁻². Размер реек бейнита нижнего уменьшается до h_P ~ 0,25...0,5 мкм, вдоль реек бейнита верхнего наблюдается максимальное повышение плотности дислокаций до 2×1011 см⁻², что приводит к формированию зон локализации деформации $\delta \varepsilon \sim 0,2...0,6$ мкм (рис. 3, *a*). В рейках мартенсита отпуска и бейнита нижнего происходит формирование фрагментированной субструктуры с высокоугловыми границами, размер которой уменьшается (до d_C ~ 0,2...0,4 мкм) по мере повышения уровня нагружения (рис. 2, *б*; 3, *б*). Плотность дислокаций в бейните нижнем составляет $\rho \sim до 9 \times 1010...1011$ см⁻², в мартенсите отпуска $\rho \sim до 1,2...1,3 \times 1011$ см⁻².

a x 20000

<u>Фрагментация Б</u>_Н

x 20000

б

Рис. 3. Протяженные дислокационные скопления в зонах локализованной деформации вдоль реек верхнего бейнита (а) и фрагментированная структура нижнего бейнита (б)

Экспериментальная информация позволила не только выполнить аналитическую оценку изменения интегрального значения предела текучести ($\sum \sigma_T$), но и величины дифференцированного вклада всех структурных параметров в участке перегрева, а именно: размера зерна (D₃), субзерна (d_C), плотности дислокаций (ρ), межкарбидного расстояния (λ_q), а также объемной доли формирующихся структур, согласно зависимости Арчарда, где: σ_0 – трения решетки (напряжение Пайерлса-Набарро); $\Delta \sigma_{T-P.}$ – твердорастворного (упрочнение твердого раствора легирующими элементами, соответственно теории Мота-Набарро); $\Delta \sigma_3$ и $\Delta \sigma_C$ – упрочнения за счет изменения величины зерна в соответственно зависимости Холла-Петча; связывает размер зерна и субзерна с сопротивлением деформации, $\Delta \sigma_{\rm d}$ – дислокационного упрочнения, обусловленного междислокационным взаимодействием, соответственно теории Дж. Тейлора, А. Зегера, Н. Мота и Г. Хирша, характеризующая пластическую деформацию, а также $\Delta \sigma_{\rm d.y.}$ – упрочнения за счет дисперсных фаз по Оровану [8].

Сопоставлением изменения расчетного значения предела текучести ($\sum \sigma_T$) в участке перегрева непосредственно после сварки и последующего предварительного внешнего статического нагружения растяжением показано следующее. В состоянии после сварки расчетное значение $\sum \sigma_T \sim 950$ МПа, максимальный вклад в предел текучести вносит субструктурное $\Delta \sigma_C \sim 460$ МПа и дислокационное $\Delta \sigma_A \sim 154$ МПа упрочнение, а минимальный дисперсионное ($\Delta \sigma_{A.Y.}$) и зеренное ($\Delta \sigma_3$) упрочнение ($\sim 113...117$ МПа). В условиях внешнего нагружения ($\sigma_H = 0.85 \sigma_B$) общее значение предела текучести повышается до значения ~ 1100 МПа. Это происходит за счет повышения вклада субструктурного $\Delta \sigma_C \sim 550$ МПа и дислокационного упрочнения $\Delta \sigma_A \sim 178$ МПа, что связанно с фрагментацией структур бейнита нижнего и мартенсита отпуска при равномерном повышении и распределении в них плотности дислокаций. На рис. 4 показан вклад

(в %) каждого из видов упрочнения в интегральную величину $\Sigma \sigma_T$ и структурных составляющих (бейнита верхнего, бейнита нижнего и мартенсита отпуска) в величину субструктурного упрочнения в участке перегрева сварного соединения после внешнего нагружения.

Таким образом, показано, что фрагментация субзеренной структуры способствует повышению сопротивления пластической деформации металла, так как при этом возрастает суммарная длина границ зерен и субзерен, которые являются препятствиями для движения дислокаций. В результате таких процессов структура металла измельчается, за счет чего и упрочняется, что мы и наблюдали относительно исследованных нами образцов стали 17Х2М.

Рис. 4. Дифференцированный вклад механизмов упрочнения ($\Delta \sigma$) в изменение интегрального значения $\sigma T(a)$ и вклад структурных составляющих (БВ, БН, МОТП) в изменение субструктурного упрочнения ($\Delta \sigma C$) в участке перегрева после внешнего нагружения $\sigma H = 0.85 \sigma B$

Экспериментальные данные о характере распределения дислокаций и их плотности в различных структурах (бейните нижнем, бейните верхнем и мартенсите отпуска) позволили рассчитать также и уровень локальных внутренних напряжений (τ_{BH}) и сопоставить эти значения с теоретической прочностью при сдвиге $\tau_{TEOP} = G/10 = 8400$ МПа (G – для железа) [9].

Показано, что максимальные значения по τ_{BH} формируются вдоль границ реек $B_B \sim 1294...2600$ МПа, а минимальные в структурах $B_H \sim 924...1474$ МПа, в мартенсите отпуска 1800...2000 МПа. Применение предварительного внешнего нагружения приводит к повышению уровня локальных внутренних напряжений, при максимальном значении вдоль цементитных пластин бейнита верхнего (до 2240...3700 МПа).

Обобщение и анализ результатов аналитической оценки распределения локальных внутренних напряжений (τ_{BH}) в характерных структурных составляющих для всех исследуемых технологических режимов показал, что наиболее плотные и протяженные ($\iota \sim 1, 2...6$ мкм) дислокационные скопления ($\rho \sim 4 \times 10^{10}...2 \times 10^{11}$ см⁻²) формируются вдоль сплошных цементитных пластин в структурах бейнита верхнего с величиной локальных внутренних напряжений до ~ 1294...3700 МПа (0,44 от τ_{TEOP}), что при более жестких эксплуатационных условиях может спровоцировать формирование локальных концентраторов внутренних напряжений и соответственно хрупкое разрушение.

Для дислокационных скоплений (р ~ 4...8 ×10¹⁰...10¹¹ см⁻²), формирующихся в структурах бейнита нижнего, характерны и значительное уменьшение их протяженности ($\iota \sim 0, 2...0, 7$ мкм) при равномерном распределении по внутреннему объему реек, что способствует уменьшению практически 1,5...2 раза уровня локальных внутренних напряжений $\tau_{BH} \sim 924...1474$ МПа (0,18 от τ_{TEOP}). Подобная картина наблюдается и для мартенсита отпуска. Поэтому при изготовлении сварных конструкций из высокопрочных сталей, которые в процессе эксплуатации подвергаются значительным нагрузкам,

режимы сварки должны выбираться таким образом, что в металле ЗТВ таких соединений формировалась структура состоящая из бейнита нижнего и мартенсита отпуска.

Выводы. Экспериментально-расчетными исследованиями показано, что в условиях воздействия предварительного статического нагружения растяжением величиной $\sigma_{\rm H} = 0.85\sigma_{\rm B}$ в металле ЗТВ сварных соединений высокопрочных сталей происходит повышение значений предела текучести и предела прочности, что связанно с измельчением зеренной субзеренной структуры и повышением плотности дислокаций.

Показано, что основными механизмами, повышающими предел текучести металла в участке перегрева ЗТВ сварных соединений, является субструктурное и дислокационное упрочнение. Происходит это за счет фрагментации структур бейнита нижнего и мартенсита отпуска, а также за счет равномерного распределении в них плотности дислокаций.

Установлено, что потенциальными участками зарождения микротрещин в участке перегрева ЗТВ сварных соединений высокопрочных сталей являются границы реек бейнита верхнего, уровень плотности дислокаций и соответственно локальных внутренних напряжений, вдоль которых в 1,5...2 раза выше, по сравнению с границами структур бейнита нижнего.

Список использованных источников

1. Шоршоров М. Х. Фазовые превращения и свойства стали при сварке / М. Х. Шоршоров, В. В. Белов. – М. : Наука, 1972. – 220 с.

2. *Макаров Э. Л.* Холодные трещины при сварке легированных сталей / Э. Л. Макаров. – М. : Машиностроение, 1981. – 247 с.

3. *Сварка* и проблемы вязкохрупкого перехода / [В. П. Ларионов, Р. С. Григорьев, Г. А. Новиков и др.]. – Новосибирск : Изд-во СО РАН, 1998. – 596 с.

4. *Микроструктуры*, соответствующие инициации хрупкого разрушения в зоне термического влияния швов на низкоуглеродистой стали / Ohya Kenji, Rim Jongseop, Yokoyama Kenichi [и др.] // Met. and Mater. Trans. A. – 1996. – № 9. – С. 2574-2582.

5. *Ito Y*. and Bessyok. Weldability Formula of High Strength steels related to heat-affected-zone cracking. JJW Doc IX - 576-68.

6. *Касаткин О. Г.* Интерполяционные модели для оценки фазового состава зоны термического влияния при дуговой сварке низколегированных сталей / О. Г. Касаткин, П. Зайфарт // Автомат. сварка. – 1984. – № 1. – С. 7-11.

7. *Касаткин О. Г.* Расчет режимов сварки и свойств сварных соединений низколегированных сталей повышенной прочности / О. Г. Касаткин. – К. : Общество «Знание» УССР, 1987. – 24 с.

8. Гольдштейн М. И. Металлофизика высокопрочных сплавов / М. И. Гольдштейн, В. С. Литвинов, Б. М. Бронфин. – М. : Металлургия, 1986. – 307 с.

9. *Теоретическое* и экспериментальное исследование дисклинаций / Н. А. Конева, Д. В. Лычагин, Л. А. Теплякова, Э. В. Козлов. – Л. : Изд-во ЛФТИ, 1986. – С. 116.