Abstract:
Urgency of the research. Current trends of distributed generation development in Ukraine indicate a rapid generation increase from renewable energy plants. Most developed countries gradually refuse from the fossil fuels use and invest more and more to the “green” energy. Therefore, there is a need for a detailed study of the operation conditions of distributed energy sources due to their instability, as well as the processes that arise in distribution electric networks with diverse types of distributed energy sources. Target setting. In the producing process of power energy by distributed energy sources due to the increase in their number, there are situations where several renewable sources of energy operate to only one system of buses. Thus, such dis-tributive networks acquire the features of a local power system, which complicates the control process of such systems, and also there is a problem with the electricity supply of consumers. Actual scientific researches and issues analysis. The analysis of publications suggests that in literature more attention is paid to studying the operating modes of solar power plants, or small hydroelectric power plants. However, almost no at-tention was paid to the study of their co-operation work. Uninvestigated parts of general matters defining. Only a few works are devoted to the study of the co-operation of the diverce sources of distributed energy sources in the local electrical systems. That is why, their impact on power distribution networks and on the grid in general has not been studied extensively. The research objective. In this article was considered the influence of asynchronous generators on small hydroelectric power plants on the operation modes of distribution electrical networks, and were investigated the processes that are occur-ring in local power systems with different types of distributed energy sources. The statement of basic materials. Based on the research results, was developed a computer model of a such system in the PS CAD software environment. Two solar stations and one small hydroelectric power station with an asynchronous gen-erator were connected to the power supply. It was shown the simulation of two modes of operation: a joint operation of a small hydroelectric power station, two solar power stations and a power supply center; a joint operation of a small hydroe-lectric power plant, two solar power stations and a power supply disconnected. Conclusions. As a result of computer simulation, it is shown that by switching on a small hydroelectric power plant with an asynchronous generator in the case of an emergency shutdown of centralized power supply, it is possible to restore the work of solar power plants, and thus partially or completely restore the power supply of consumers.
Description:
Лежнюк, П. Д. Моделювання сумісної роботи розосереджених джерел електроенергії та централізованого електропостачання / П. Д. Лежнюк, І. О. Гунько, Ю. В. Малогулко, І. В. Котилко, Л. Р. Крот // Технічні науки та технології. – 2018. – № 2 (12). – С. 189-195.